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Abstract: In the context of escalating microbial resistance to antibiotics, antiseptics are gaining prominence as a critical component of in-
fection prevention. Concurrently, the widespread and increasing use of these biocides, particularly within healthcare settings, has prompt-
ed concerns regarding their potential contribution to the emergence of reduced microbial susceptibility to them and the phenomenon of
cross-resistance to antibiotics. This review focuses on four widely utilized antiseptics: chlorhexidine, octenidine, povidone-iodine, and
alcohols. It was discusses their antimicrobial activity, mechanisms of action, and applications, including available preparations and the
minimum effective concentrations required for reliable pathogen eradication. Current evidence regarding the mechanisms underlying
decreased susceptibility to these agents is summarized. Furthermore, the review presents data from studies investigating the impact of
prolonged exposure to subinhibitory concentrations of antiseptics on the induction of reduced antimicrobial efficacy and the potential for
co-selection of antibiotic resistance. Furthermore, the review presents methods of adaptation of bacteria and fungi to increasing concen-
trations of antiseptics, including techniques using liquid media - gradient method and incremental method, as well as methods based on
solid media. Findings from recent studies suggest that long-term exposure of microorganisms to subinhibitory concentrations of antisep-
tics may result in reduced effectiveness of these agents and selection of mutants with changed sensitivity to antibiotics.

1. Introduction. 2. Main groups of antiseptics - characteristics, mechanism of action and resistance, available products on the market.
2.1. Chlorhexidine. 2.2. Octenidine. 2.3. Iodophores 2.4. Alcohols. 3. Adaptation to antiseptics. 3.1. Exposure to chlorhexidine and changes
in susceptibility profiles. 3.2. Exposure to octenidine and changes in susceptibility profiles. 3.3. Exposure to alcohol / PVP-I and changes
in susceptibility profiles. 4. Conclusion.

Keywords: antibiotic cross-resistance, antiseptic adaptation, antiseptic resistance, disinfectants, efflux pumps;

1. Introduction hospices, and long-term care facilities, especially in

light of the growing global challenge of antimicrobial

Antiseptics and disinfectants play a crucial role in
preventing infections caused by various pathogens,
limiting the spread of multidrug-resistant microor-
ganisms, and maintaining high standards of public
and personal hygiene. These biocidal agents are widely
used in many areas, including medical, veterinary, in-
dustrial, public facilities, and domestic areas settings
(Campana and Baffone 2017, Tyski et al. 2022, Tyski
et al. 2024). Increasing attention is being paid to their
application in public health settings such as hospitals,

resistance (AMR).

Antiseptics are substances that, when applied to the
skin, mucous membranes (including the oral cavity),
or superficial wounds, are capable of destroying living
microorganisms (USP-NF1072). Depending on the in-
tended purpose of use, they may have a prophylactic
or therapeutic function. Prophylactic applications in-
clude preventing infections through skin disinfection
before surgical procedures, hand hygiene in hospi-
tals, or patient bathing prior to medical interventions.

* Corresponding author: Agnieszka Laudy, Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw,

02-097 Warsaw, Poland; e-mail: alaudy@wp.pl
© 2025 Marlena Zawadzka and Agnieszka E. Laudy.

This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creative-

commons.org/licenses/by-nc-nd/4.0/)
Cite as:

Antiseptics: their characteristics, application and challenges in the 21st century resulting from the spread of antimicrobial resistance
(AMR), Zawadzka M. and Laudy A.E., ADV MICROBIOL-NY, 2025, 64, 3, 112-140, https://doi.org/10.2478/am-2025-0010


mailto:alaudy@wp.pl
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

ANTISEPTICS: THEIR CHARACTERISTICS, APPLICATION AND CHALLENGES IN THE 21ST CENTURY 113
RESULTING FROM THE SPREAD OF ANTIMICROBIAL RESISTANCE (AMR)

Therapeutically, antiseptics are used in the treatment
of existing infections, such as infected wounds, where
they are applied topically and regularly over an extend-
ed period. These agents contain antimicrobial sub-
stances that can be classified into several key groups,
including alcohols, aldehydes, oxidizing compounds
(such as hydrogen peroxide, sodium hypochlorite,
peracetic acid, ozone, and iodophors), phenolic com-
pounds, and cationic surfactants, which include qua-
ternary ammonium compounds, biguanides, and bi-
pyridines (Lukomska-Szymanska et al. 2017). Unlike
antiseptics, disinfectants are chemical agents that de-
stroys microorganisms when applied to a inanimate
surface. Both antiseptics and disinfectants are critical
components of infection prevention strategies in med-
ical facilities, where they are routinely used to reduce
infection risk and prevent healthcare-associated infec-
tions (HAISs). In recent years, due to the SARS-CoV-2
pandemic and the associated risk of serious health
consequences with infection, people’s awareness of the
threats related to microorganisms has increased. Fur-
thermore, the COVID-19 pandemic has contributed to
a significant global increase in disinfectant use. Anti-
sepsis and disinfection have become one of the most
important methods of preventing infections, covering
homes, hospitals and public spaces. Hand disinfection
has become a daily habit, also in public spaces. An
increasing number of people have begun to use anti-
septics in their homes and workplaces (Babalska et al.
2021). Alcohol-based products became the most com-
monly used antiseptics, while chlorine-based products
were the preferred choice for surface disinfection in
households (Guo et al. 2021). Antiseptics and disin-
fectants, played a particularly crucial role in the hos-
pital environment, as evidenced by the significant in-
crease in their use in 2020 compared to 2019, before
the outbreak of the COVID-19 pandemic. For exam-
ple, their use increased by 368% in adult wards and
by 299% in pediatric wards in 2020 compared to 2019
(Denisiewicz and Denisiewicz 2021). Effective surface
disinfection against SARS-CoV-2 includes agents such
as ethanol, hydrogen peroxide, sodium hypochlorite,
phenols, chlorine-releasing agents, formaldehyde, glu-
taraldehyde, iodine-releasing compounds, and quater-
nary ammonium compounds. The WHO particularly
recommends phenols, hydrogen peroxide, sodium hy-
pochlorite, ethanol, and ammonium compounds for
this purpose (Guo et al. 2021).

However, insufficient knowledge among the gener-
al public and sometimes even among healthcare per-
sonnel regarding the proper use of antiseptics and dis-
infectants can result in reduced antimicrobial efficacy
or the development of microbial resistance. Common
issues include improper storage and incorrect usage
(e.g., inappropriate concentrations, unsuitable surfac-

es, against inappropriate bioburden, or targeting mi-
croorganisms outside the agent’s spectrum) (Dindarloo
et al. 2020). Such misuse may promote the emergence
of bacterial strains with reduced susceptibility to bio-
cides. Moreover, the widespread and prolonged use of
these agents has been associated with increases in both
minimum inhibitory concentrations (MIC) and min-
imum bactericidal concentrations (MBC). This trend
was observed following the introduction of chlorhexi-
dine and octenidine into clinical practice. For instance,
a comparison of Staphylococcus aureus isolates before
and after the introduction of these agents revealed
increased MIC and MBC values (Hardy et al. 2018).
A similar pattern was seen in Enterococcus faecium,
where strains isolated between 1998 and 2015 demon-
strated greater tolerance to isopropanol, suggesting
that prolonged exposure to alcohol-based antiseptics
may have contributed to this adaptation (Pidot et al.
2018).

These findings raise concerns about the potential
for increased antiseptic tolerance to influence bacteri-
al cross-resistance to antibiotics. It has been observed
that long-term exposure to biocides can result in the
emergence of mutants with reduced antibiotic suscep-
tibility (Garratt et al. 2021). It is worth noting that,
before market authorization, the effectiveness of new
biocidal products should be evaluated in accordance
with European Standards (ENs) (Tyski et al. 2022).
For antiseptics intended for medical use tests in accor-
dance with the European Pharmacopoeia monography
(2024) are required, which we described in our previ-
ous publication (Tyski et al. 2022). It should be realized
that the above-mentioned effectiveness tests are defi-
nitely different from determining activity by the MIC
and MBC values.

The aim of this review is to draw attention to the
status of currently available antiseptics and products
containing them, available on Polish market, and to
the possibility of acquiring tolerance or reducing the
susceptibility of bacteria, including hospital strains, to
antiseptics used in healthcare facilities. Furthermore,
we explore the existing knowledge on how bacterial
exposure to antiseptics may affect antibiotic resistance
profiles, along with the molecular mechanisms under-
lying these changes.

1. Main groups of antiseptics - characteristics, mech-
anism of action and resistance, available products on
the market

1.1. Chlorhexidine
Chlorhexidine (CHX) belongs to the bisbiguanide,

a class of cationic antimicrobial agents. It’s structure
consists of two symmetrically arranged 4-chlorophe-
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nol rings and two guanidine groups connected by a
hexamethylene chain (Thangavelu et al. 2020). CHX
can be obtained in a number of different forms, includ-
ing acetate, dihydrochloride salts, and digluconate.
However, chlorhexidine digluconate (CXG) is the most
commonly used due to its high solubility. It exhibits a
wide range of efficacy against both Gram-positive and
Gram-negative bacteria, although higher CXG concen-
trations are required in order to combat Gram-negative
bacteria. A 4% solution of CXG demonstrates bacteri-
cidal activity within just 5 minutes of contact against
both Gram-positive and Gram-negative bacteria (Ek-
izoglu et al. 2016). It also effectively eliminates fungi,
yeast, dermatophytes, and certain lipophilic viruses.
However, its sporicidal properties is only achieved at
elevated temperatures (Lukomska-Szymanska et al.
2017).

Chlorhexidine at low concentrations exhibits bac-
teriostatic activity, while at high concentrations it
demonstrates bactericidal effects. Its mechanism of
action is based on direct interaction with the bacterial
cytoplasmic membrane. As a cationic surfactant, CHX
binds to the negatively charged cell surface, disrupting
the organization of the outer phospholipid layer. It dis-
places stabilizing divalent cations, leading to decreased
membrane fluidity and the formation of hydrophil-
ic domains in its structure. At higher concentrations,
increased membrane permeability is observed, result-
ing in leakage of cytoplasmic contents and ultimately
denaturation and precipitation of proteins and nucle-
ic acids (Cieplik et al. 2019). This molecular mecha-
nism of action correlates with observed morphological
changes induced by chlorhexidine in bacterial cells.
Studies have demonstrated that its action leads to the
deformation and degradation of the cell wall in both
Gram-negative bacteria, such as Escherichia coli, and
Gram-positive bacteria, such as Bacillus subtilis. Upon
exposure to chlorhexidine, characteristic indentations
were observed on the bacterial cell surfaces, particu-
larly in the tip or cap region of B. subtilis and along the
trunk of E. coli cells, as revealed by scanning electron
microscopy (Cheung et al. 2012). Furthermore, the
number of these indentations increased proportionally
with CHX concentration. Transmission electron mi-
croscopy (TEM) also showed the formation of “ghost
cells” following prolonged CHX exposure (Cheung et
al. 2012).

Chlorhexidine has also been evaluated for its effica-
cy against microbial biofilms, which are often less sus-
ceptible to antimicrobial substances than planktonic
cells. Kean et al. (2018) studied the impact of CXG on
the biofilm of Candida spp., including Candida auris.
Currently, C. auris strains are the most multidrug-re-
sistant pathogenic yeast causing healthcare-associated
infections. It has been shown that CHX at a concen-
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tration of 0.05% showed high efficacy against plank-
tonic C. auris cells, but yeast biofilms, especially ma-
ture ones, showed tolerance to such CHX solutions.
Increasing the CHX concentration to 2% resulted in
complete destruction of early-stage biofilms, as well as
a reduction of mature ones. The antiseptic efficacy of
2% chlorhexidine was also tested on interspecies bio-
films. The analysis showed that this agent effectively re-
duced the number of viable cells in single-species bio-
films, including C. auris NCPF 8973, S. aureus NCTC
10,833 and Staphylococcus epidermidis RP62A (ATCC
35984). Similar efficacy was observed in dual-species
biofilms (C. auris with S. aureus, and C. auris with S.
epidermidis), where the reduction in cell numbers ex-
ceeded 4 log, (Giilmez et al. 2022). The effectiveness of
CHZX against the biofilm of Gram-negative bacteria, i.e.
Klebsiella pneumoniae, Pseudomonas aeruginosa and
Acinetobacter baumannii, has also been demonstrated.
Depending on the strain, the ability of CHX to inhibit
biofilm formation and reduce mature biofilm was ob-
served (Hubner et al. 2010a; Machuca et al. 2019; Pe-
rez-Palacios et al. 2022)

Antiseptic products with chlorhexidine have been
widely used for a long time. Therefore, studies on the
basic antimicrobial efficacy of CHX according to EN
phase 1 are rarely published. Based on tests conducted
in a minjaturized assay according to EN 1040, after 5
minutes of exposure P. aeruginosa to different concen-
trations of CXG, it was shown the highest efficacy at
concentrations of 4% and 0.12%, where the bacterial
cells reduction was 5.34 log, , for both concentrations.
For K. pneumoniae, a 4% CXG solution achieved > 5
log,o reduction, while efficacy dropped below 5 log;, at
0.12% and 0.06%. E. coli showed the greatest sensitivity
to CXG, with a log,, reduction of 5.69 at 4% concen-
tration, but less than 5 log;, at lower concentrations
(Hornschuh et al. 2021).

Unlike phase 1 EN, phase 2 tests are dedicated to
a specific area of product application. In the medical
area, in phase 2, step 1 of EN 13727 is used to test an-
tibacterial activity, and in phase 2, step 2, several stan-
dards are recommended (Tyski et al. 2022). In scientific
research, modifications are introduced to the method-
ology according to EN and studies are conducted on
wider panels of strains. It has been shown that changes
in the chlorhexidine efficacy depending on the pres-
ence of isopropyl alcohol. In a study conducted using
the quantitative suspension test (EN 13624), a chlor-
hexidine-based skin antiseptic [2% (w/v) CXG in 70%
(v/v) isopropyl alcohol (IPA)] was found to meet the
full fungicidal requirements, achieving > 4 log, cells
reductions for Candida albicans and C. auris in both
clean and dirty conditions after 2 minutes of a contact
time. In contrast, hand and body wash antiseptic [4%
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CXG (v/v)] showed limited efficacy against C. auris,
achieving reductions in the range of 1.55-2.63 log
after 2 minutes of exposure in clean conditions and
1.15-2.45 log,  in dirty conditions. For C. albicans, the
effect was more pronounced, with reductions of 2.83
log , in clean conditions and 2.78 log,, in dirty condi-
tions after 1 minute, which increased to 3.57 log,, and
3.36 log, , respectively, after 2 minutes. Still, the 4% ch-
lorhexidine gluconate (v/v) met the EN 13624 for hy-
gienic hand washing, requiring a > 2 log, , reduction in
1 minute in dirty conditions (Moore et al. 2017).

CXG-based impregnated antiseptic wash-mitts
[100 g contains 2% CXG and 0.04% benzalkonium
chloride] were tested at concentrations of 10%, 50%,
80%, and 97% to evaluate their antifungal efficacy.
However, quantitative suspension tests performed ac-
cording to the EN 13624 demonstrated that none of
the concentrations achieved > 4 log,  reduction in C.
albicans ATCC 10231 or two C. auris strains (DSM
21092 and DSM 105986) after a 30-second contact
time (Gugsch et al. 2024).

In the conducted study, following the EN 13727
and EN 13624, the bactericidal and fungicidal effica-
cy of a 2% CXG solution was evaluated. The results
demonstrated that the efficacy of the preparation in-
creased with prolonged exposure time. After 1 minute
of contact with P. aeruginosa ATCC 15442, a reduc-
tion lover than 5 log,  was observed. However, after 5
minutes of exposure, the cells reduction exceeded 5.38
log .. In the case of E. coli NCTC 10538, after 1 minute
of exposure, the reduction was above 5.52 log,  in clean
conditions, while in dirty conditions, it was below 5
log . After 5 minutes, regardless of the conditions, the
reduction exceeded 5.52 log, , indicating full efficacy
of the preparation after a longer exposure time. In con-
trast, C. albicans ATCC 10231 displayed a lower sen-
sitivity to 2% CXG, achieving a reduction of 3.52 log |
in clean conditions and 3.27 log  in dirty conditions
after 1 minute. After 5 minutes of exposure, the cells
reduction exceeded 4.52 log , thereby meeting the
fungicidal standard (reduction > 4 log, ). In the case of
Aspergillus brasiliensis, no fungicidal activity was ob-
served, as the reduction remained below the required
threshold in both clean and dirty conditions after 1 and
5 minutes of exposure (Sahiner et al. 2019).

Studies on the efficacy of CHX against SARS-
CoV-2 have yielded inconsistent findings. Some lab-
oratory investigations report that CHX-containing
mouthwashes are ineffective at inactivating the viruses,
(Komine et al. 2021) while others show that they can
reduce viral load temporarily but not permanently. A
study comparing 0.05% CHX with 0.05% cetylpyridin-
ium chloride demonstrated a modest but statistically

significant decrease in viral load among SARS-CoV-2-
positive patients. Interestingly, a similar reduction was
observed in patients using placebo irrigation (0.9%
NaCl), suggesting that this reduction may be primarily
due to the effect of mechanical irrigation (Bonn et al.
2023). Another study demonstrated that a 0.12% CHX
mouthwash temporarily suppressed the SARS-CoV-2
viral load in saliva, reducing it to undetectable levels
for up to two hours. However, after four hours, the vi-
ral load increased again, indicating a short duration of
this effect (Yoon et al. 2020). Although some studies
suggest limited effectiveness of chlorhexidine in re-
ducing viral load, other research has shown that CHX
mouthwashes and throat sprays can offer a promising
method for eliminating SARS-CoV-2 from the throat
in COVID-19 patients. The combination of a 0.12%
CHX mouthwash and throat spray demonstrated the
highest efficacy, with 86.0% of patients achieving viral
clearance from the throat, compared to 62.1% in the
group using mouthwash alone. This was significantly
higher than the 5.5% of patients in the control group
using only mouthwash and 6.3% in the control group
using both mouthwash and spray (Huang and Huang
2021).

Chlorhexidine, may result in various adverse ef-
fects. Commonly reported side effects include contact
skin irritation and taste disturbance. In rare cases,
allergic reactions such as occupational asthma, skin
rash, photodermatosis or anaphylaxis may occur. Pro-
longed use may also lead to tooth and tongue staining
(Lukomska-Szymanska et al. 2017). Surfaces covered
with plaque tend to exhibit more intense staining and a
greater extent of calculus formation compared to those
that are plaque-free. This suggests that performing an
initial professional teeth cleaning before the use of
CHX can help mitigate its undesirable side effects, es-
pecially with long-term use (Zanatta et al. 2010).

CHX is widely used as an active ingredient in var-
ious products, acting as an antiseptic either alone or
in combination with other substances. A summary of
commercially available products, including their con-
centrations and indications, is presented in Table I. It
is extensively utilized in dentistry as a mouthwash to
aid in the management of gingivitis during dental in-
terventions and to reduce plaque accumulation. There
are additional mouthcare gels with strengths of 1% and
0.2%, toothpastes with 0.05% CHX, and biodegrad-
able “chips” of CXG that can be put into periodontal
pockets in conjunction with subgingival debridement
(Brookes et al. 2020). Higher concentrations of CHX
(0.2%) demonstrate better plaque-inhibiting effects
compared to lower concentrations (0.12% and 0.06%).
CHX at a 0.2% concentration is an effective agent used
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as a mouth rinse, demonstrating efficacy in reducing
Streptococcus mutans and Lactobacillus. However, they
are associated with a higher risk of adverse effects, such
as loss of taste and numbness (Haydari et al. 2017).
Consequently, increasing attention has been directed

toward natural alternatives, such as cocoa bean husk
and ginger-based rinses, which have shown potential
in reducing S. mutans and Lactobacillus counts with a
lower risk of adverse effects.

Table I

Selected antiseptic products available on Polish market, and their indications

Commercially Active ingredients Concentration
available products

Product type Indications

Products with chlorhexidine as a main ingredient

Plus+ Focus

Aseptall chlorhexidini digluconatis | 0.12% oral spray for gum inflammations, post-dental proce-
dures, canker sores, chapped corners of the
mouth

ChloraPrep chlorhexidini digluconatis, | 2% v/v skin antiseptic | for skin disinfection before surgical proce-

2-propanolum 70% v/v applicator dures

Chlorhexidin chlorhexidini digluconatis | 1% powder for care and protection of skin areas exposed

puder to infection, supporting the regeneration of
irritated or damaged skin

Curaprox Perio chlorhexidini digluconatis | 0.5% toothpaste helps maintain gum health and regenerates

them, prevents tartar formation, eliminates
dental plaque, for local use

Curasept ADS chlorhexidini digluconatis | 0.05% mouthwash especially recommended for people wearing

DNA 205 orthodontic appliances or implants, it inhibits
the development of dental plaque

Decontaman Pre | chlorhexidini digluconatis | 2% body wash for skin disinfection before surgical proce-

Wipes wipes dures

ELGYDIUM chlorhexidini digluconatis | 0.12% toothpaste for irritated, sensitive, or bleeding gums and

Perioblock PRO dental plaque

Eludril Classic chlorhexidini digluconatis, |0.1% mouthwash for adjunctive treatment for periodontics and

alcohol implantology, for patients with prosthetic
43% viv restorations or implants

Eludril Extra chlorhexidini digluconatis | 0.2% mouthwash for individuals with sensitive oral mucosa, for
irritated and bleeding gums, before and after
dental procedures, supplementary use during
dental treatment

Elugel chlorhexidini digluconatis | 0.2% dental gel for patients wearing orthodontic braces, sup-
plementary use after periodontic procedures,
implant and surgical procedures

GUM Butler chlorhexidini digluconatis | 0.06% toothpaste for use with implants, dentures, orthodontic

ParoeX appliances, protects delicate gums, reduces
gum inflammation,
helps prevent plaque build-up,
provides long-term protection against gum
disease

Gum Paroex chlorhexidini digluconatis | 0.12% mouthwash for reduction of dental plaque accumulation,
relief of sensitive gums, maintenance of gum
tissue health

Hydrex S chlorhexidini digluconatis | 4% solution for washing hands, for disinfecting the skin of

hands and skin before surgery
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Manusan chlorhexidini digluconatis | 4% solution for hygienic and surgical hand washing, body
and hair
MEDISEPT chlorhexidini digluconatis, | (0.5g + 60g)/100g | solution for hygienic and surgical hand disinfection
Velodes Soft 2-propanolum
OrthoKIN Mint chlorhexidini digluconatis | 0.06% mouthwash for people wearing orthodontic braces
Spirytusu Hibita- | chlorhexidini digluconatis | 0.5% solution for disinfecting the hands of medical person-
nowego 0,5% ATS nel before and after contact with patients, for
disinfecting the skin of patients before injec-
tions and surgical procedures, for disinfecting
the surgical field
Spitaderm chlorhexidini digluconatis, | (70g + 0.5g + solution for hygienic and surgical hand disinfection
2-propanolum, 1.5¢)/100g before punctures, surgeries, injections
hydrogenii peroxidum 30
per centum
Products with octenidine as a main ingredient
Octaseptal octenidinum dihydrochlo- | (0.1g + 2g)/100g | aerosol for antiseptic treatment of not very extensive
ridum, wounds and disinfection of the skin, mucous
phenoxyethanol membranes, oral cavity, in the treatment of
minor burn and ulcerative wounds, in chil-
dren (including for the care of the umbilical
stump)
Octeangin octenidinum dihydrochlo- | 2.6 mg/tabl. lozenges for use in short-term adjuvant treatment of
ridum inflammation of the oral cavity and throat
mucosa
Octeniderm octenidinum dihydrochlo- | (0.1g + 30g + solution for skin disinfection before surgical proce-
ridum, 45g)/100g dures
1-propanolum,
2-propanolum
Octenisept octenidinum dihydrochlo- | (0.1g + 2g)/100g | solution for disinfection and supportive treatment of
ridum, small, superficial wounds and pre-procedural
phenoxyethanol skin disinfection for non-surgical procedures.
Septisse octenidinum dihydrochlo- | (0.1g + 2g)/100g | aerosol for skin disinfection before surgical proce-
ridum, dures, care of the umbilical stump, postopera-
phenoxyethanol tive sutures, disinfection of the oral cavity
Products with iodophors as a main ingredient
Betadine povidonum iodinatum 10% ointment for local treatment of burns, wounds, abra-
sions, trophic ulcers, skin infections
Betadine povidonum iodinatum 75 mg/ml solution for washing hands before surgery and hygienic
disinfection of hands
Braunoderm povidonum iodinatum, (1g + 50g)/100g | solution for disinfection of intact skin before surgery,
2-propanolum injections, punctures, catheterization
Jodi Gel povidonum iodinatum 10% gel for disinfecting wounds and skin before surgi-
cal procedures, in stomatitis, in primary and
secondary local skin infections
PV Jod 10% povidonum iodinatum 100 mg/g solution for disinfecting wounds, especially superficial

ones and after surgical procedures, as well as
burns, scabs and ulcers, prevention and treat-
ment of infections of the skin and mucous

membranes
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Products with alcohols as a main ingredient

Desderman N ethanolum (96%), (79g + 0,1g)/100g | solution for hygienic and surgical hand skin disin-
2-biphenylol fection, the preparation is recommended for

health service facilities

Kodan Tinktur 1-propanolum, (10g + 45g + solution for skin disinfection before surgical proce-

Forte 2-propanolum, 0.2g)/100g dures, blood collection, wound dressing, for
2-biphenylolum hygienic hand disinfection, prevents skin

fungal infections

Mikrozid AF ethanolum (94%), (25g + 35 g)/100g | solution for disinfection of surfaces of medical devices

liquid 1-propanolum

Mikrozid AF ethanolum 96%, (25g + 35¢)/100g | wipes for disinfection in medical clinics, hospitals

Wipes JUMBO 1-propanolum (including neonatal and neonatal wards),

public places

Primasept med 1-propanolum (10g + 8g + solution for disinfecting and washing hands and body
2-propanolum, 2g)/100g
2-biphenylolum

Promanum pure ethanolum, (78.1g + solution for hygienic and surgical disinfection of hands
2-propanolum 10g)/100g with sensitive skin

Sensivia ethanolum, (45g + 28g + solution for hygienic and surgical disinfection of hand
2-propanolum, 0,3g)/100g skin
acidum lacticum

Septoderm ethanolum, (45g + 30 g)/100g | gel for hygienic and surgical hand disinfection
2-propanolum

Sirafan Speed 1-propanolum, (25g + 35g)/100g | solution for disinfection of areas in contact with food
2-propanolum (tables, slicers)

Skinman Soft 2-propanolum, (60g + 0.3g + solution for hygienic hand disinfection, for long-term
benzalkonii chloridum, 0.1g)/100g use by people with sensitive skin, for versatile
acid undecylenicum use in medical facilities

Skinsept color ethanolum, alcohol ben- (45.54g + 1g + solution for skin disinfection before surgery, injections,
zylicus, 27g)/100g punctures, blood collection and vaccinations
2-propanolum

Skinsept Pur ethanolum (96%), (46g +27g + solution for skin disinfection before surgeries, injec-
2-propanolum, 1g)/100g tions, punctures, vaccinations, blood collec-
alcohol benzylicus tion, dressing changes.

Softa-man ethanolum 96%, (47.9g + solution for hygienic and surgical hand disinfection
1-propanolum 18g)/100g

Softasept N ethanolum 96%, (78.83g + solution for skin disinfection before surgical proce-

uncolored 2-propanolum 10g)/100g dures, before venous injections and punctures

Sterillium 1-propanolum, (45g + 30g)/100g | solution for hand skin disinfection
2-propanolum

Daily bathing with CHX has been proven effective
in preventing infections, especially in the hospital set-
ting. The use of CHX baths in intensive care unit reduc-
es the risk of healthcare-associated infections (HAI),
in particular central line-associated bloodstream in-
fections (CLABSI) and infections caused by meth-
icillin-resistant S. aureus (MRSA) (Frost et al. 2016).
Regularly bathing patients with 2% CHX-impregnat-
ed washcloths can lower bloodstream infection rates
in hospitals by 30% compared to non-CHX methods

(Climo et al. 2013). Higher CHX concentrations, such
as 4%, have shown even greater efficacy. One study ob-
served a 40.4% reduction in HAIs when patients were
bathed with 4% CHX followed by rinsing with water
(Pallotto et al. 2019).

It is well known that bacteria acquire resistance or
develop tolerance to biocides. Efflux pumps are one
of the key mechanisms by which bacteria acquire re-
sistance to antiseptics. Genes encoding efflux pumps
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can be located in chromosomes as well as in mobile
element such as plasmids, integrons, and transposons.
The six main classes of efflux pumps are the major fa-
cilitator (MFS) superfamily, the ATP-binding cassette
(ABC) superfamily, the resistance-nodulation-division
(RND) superfamily, the small multidrug resistance
(SMR) family, the multidrug and toxic compound ex-
trusion (MATE) superfamily and the proteobacterial
antimicrobial compound efflux (PACE) superfamily
(Kuznetsova et al. 2025). Efflux pumps that actively re-

move disinfectants from bacterial cells to the outside
are summarized in Table II. The MFS family includes
chlorhexidine extruded pumps such as QacA, QacB
and SmvA. The ABC family consists of transporters
like AdeABC. The RND family includes pumps such
as AcrAB-TolC, EfrAB, MexAB-OprM, MexCD-Opr],
MexXY, and SdeAB. The SMR family primarily con-
tains the KpnEF and Smr pumps. The MATE family
includes the MepA pump, while the PACE family fea-
tures the Acel transporter involved in CHX extrusion.

Table II

Bacteria efflux pumps extruded antiseptics

Family of Efflux pump Species Gene location Antiseptic References
efflux pump
MFS EmrAB S. enterica chromosome | triclosan (Rensch et al. 2014)
LmrS S. aureus chromosome | benzalkonium chloride (Kernberger-Fischer et
al. 2018)
MdeA S. aureus chromosome | benzalkonium chloride (Huang et al. 2004)
MdrL L. monocytogenes chromosome | benzethonium chloride (Romanova et al. 2006)
NorA S. aureus, chromosome | benzalkonium chloride, (Furi et al. 2013;
S. epidermidis cetrimide, acriflavine Qingzhong et al. 2015;
Costa et al. 2018)
NorB S. aureus chromosome | cetrimide (Qingzhong et al. 2015)
QacA S. aureus plasmid chlorhexidine, benzethonium (Noguchi et al. 1999)
chloride
QacB S. aureus plasmid chlorhexidine (Furi et al. 2013)
SmvA P. aeruginosa, chromosome | chlorhexidine, octenidine (Wand et al. 2019; Bock
K. pneumoniae et al. 2021)
ABC EfrAB E. faecalis, chromosome | chlorhexidine, triclosan (Lerma et al. 2014)
E. faecium
PatAB S. pneumoniae, chromosome | acriflavine (Robertson et al. 2005;
S.pseudopneumoniae Alvarado et al. 2017)
RND AdeABC A. baumannii chromosome | chlorhexidine, octenidine, (Meyer et al. 2022)
benzalkonium chloride
AcrAB-TolC | S. enterica, chromosome | chlorhexidine, triclosan (Mcmurry et al. 1998;
E. coli, Webber et al. 2008;
K. pneumoniae Curiao et al. 2015)
AcrEF S. enterica chromosome | triclosan (Rensch et al. 2014)
MexAB-OprM | P. aeruginosa chromosome | chlorhexidine!, triclosan (Schweizer 1998; Hashe-
mi et al. 2019)
MexCD-Opr] | P. aeruginosa chromosome | chlorhexidine, benzalkonium (Chuanchuen et al. 2001;
chloride, triclosan Morita et al. 2003)
MexEF-OprN | P. aeruginosa chromosome | triclosan (Chuanchuen et al. 2001)
MexXY P. aeruginosa chromosome | chlorhexidine? (Tag ElDein et al. 2021)
OgxAB E. coli plasmid benzalkonium chloride, triclosan | (Hansen et al. 2007)
SdeAB S. marcescens chromosome | chlorhexidine, benzalkonium (Maseda et al. 2009)
chloride
SmeDEF S. maltophilia chromosome | triclosan (Herndndez et al. 2011)
TriABC- P. aeruginosa chromosome | triclosan (Fabre et al. 2021)
OpmH
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SMR EmrE E. coli plasmid benzalkonium chloride, (Nishino and Yamaguchi
acriflavine 2001)
KpnEF K. pneumoniae chromosome | chlorhexidine, triclosan, benzal- | (Srinivasan and Rajamo-
konium chloride han 2013)
QacG Staphylococcus spp. | plasmid benzalkonium chloride, (Heir et al. 1999)
QacH S. saprophyticus plasmid benzalkonium chloride (Heir et al. 1998)
QacJ S. aureus, plasmid benzalkonium chloride (Bjorland et al. 2003)
S. simulans,
S. intermedius
QacZ E. faecalis plasmid benzalkonium chloride (Braga et al. 2010)
Smr S. aureus plasmid chlorhexidine, benzalkonium (Noguchi et al. 1999)
chloride
MATE AbeM A. baumannii chromosome | triclosan, acriflavine (Su et al. 2005)
MepA S. aureus chromosome | chlorhexidine, benzalkonium (Costa et al. 2013)
chloride, cetrimide
PACE Acel A. baumannii chromosome | chlorhexidine (Hassan et al. 2015)

! proteomic analysis of mutants obtained after exposure to chlorhexidine, showed increased expression of the
MexA protein, a component of the MexAB-OprM pump, *increased expression of the mexX gene

Efflux pump Smr from SMR family and MepA
pump from MATE family play an main role in the
mechanisms of S. aureus resistance to antiseptic, in-
cluding CHX (Noguchi et al. 1999; Costa et al. 2013).
Additionally, gacA and qacC genes, which are located
in plasmids, have been shown to increase CHX resis-
tance in S. aureus. Moreover, exposure to benzalkoni-
um chloride can induce gacC expression, thereby en-
hancing CHX tolerance (LaBreck et al. 2020).

In a study analyzing 1050 S. epidermidis isolates, 63
exhibited reduced sensitivity to CHX (MIC > 4 ug/ml)
(Addetia et al. 2019). Among these, 9 isolates carried
the gacA gene, while gacB was absent. In addition, the
smr gene was present in 51 isolates. Notably, a novel
qacA allele was identified, encoding a modified QacA
protein with two amino acid substitutions. This new al-
lele, designated qacA4, was located in plasmid pAQZ1
and found in the highly resistant and pathogenic ST2
clone. The gacA4 gene has been shown to play an im-
portant role in increasing CHX resistance, as loss of
this gene resulted in a 4-fold reduction in the CHX
MIC values, from 4 pg/ml to 1 ug/ml.

Exposure to 4% CHX through daily bathing has
been linked to increased CHX tolerance in MRSA iso-
lates. Using the modified broth microdilution method
in line with the Clinical and Laboratory Standards In-
stitute (CLSI) guidelines, isolates from CHX-exposed
patients showed MIC values ranging from 1 to 8 ug/ml,
with MIC > 4 ug/ml occurring three times more fre-

quently than among strains isolated from unexposed
patients. Further, the possibility of transferring gac
genes was analyzed. It was shown that long-term expo-
sure to CHX predisposes to the acquisition of gacA/B
genes, depending on the clone. This phenomenon was
particularly pronounced in the case of clone ST22, in
which the frequency of gacA/B genes in CHX-exposed
strains was significantly higher compared to the unex-
posed group. A similar trend was also observed in the
case of clone ST45, but the increase in the frequency
of gene occurrence was less pronounced (Htun et al.
2019). Transferring the gacA gene between bacteria
via plasmids is one potential method for the spread of
CHX resistance. The gqacA gene was discovered to be
transferable from a CHX-resistant MRSA strain to an
E. coli strain that had previously been CHX-sensitive.
Transfer increased the CHX MIC values in E. coli from
< 0.25 to = 16 pg/ml. Genetic studies confirmed the
existence of the gacA gene in the recipient strain, in-
dicating that CHX resistance genes can be transferred
between bacterial species (Bes et al. 2021). Unlike
Gram-positive, Gram-negative bacteria extrude CHX
mainly via the RND family of efflux pumps, including
the AcrAB-TolC (E. coli, K. pneumoniae, Salmonella
enterica subsp. enterica), MexCD-Opr] (P. aeruginosa),
SdeAB (Serratia marcescens), AdeABC (A. baumannii)
systems (Table II). In addition, the occurrence of the
biocide resistance genes (BRGs) such as cepA, qacEAI
and qacE, which encode efflux pumps, has been de-
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scribed in Gram-negative bacteria (Zhang et al. 2019).
These genes are transferred by plasmids and trans-
posons. It has been shown that the CepA pump is as-
sociated with K. pneumoniae resistance to CHX (Fang
et al. 2002).

The expression of efflux genes is dependent on local
as well as global regulators. Recently, it has been shown
that exposure to biocides can cause mutations in these
regulatory genes or in the regions surrounding eftflux
pump genes. In K. pneumoniae, a single DNA mutation
was found in the intergenic region between smvR and
smvA after exposure to CHX. SmvA pump extruded
two main antiseptic CHX and OCT. The SmvR pro-
tein plays a regulatory role and inhibits the expression
of smvA. This mutation probably interferes with the
mechanism of this regulation, weakening inhibition
and leading to increased smvA expression. Exposure
to antiseptics also leads to the accumulation of mul-
tiple mutations in different locations of the bacterial
genome. Additionally, E359K substitutions or dele-
tions were detected in the malT2 gene, which encodes
an HTH-type transcriptional activator regulating the
maltose operon. However, exposure of Enterobacter
cloacae to CHX caused mutations in the bamE gene,
which is an assembly factor for outer membrane pro-
teins, and in the betI gene, which is a member of the
TetR/AcrR family of transcriptional regulators (Lescat
et al. 2021). The overproduction of the AcrAB-TolC ef-
flux pump in Enterobacterales depends on both local
and global regulators. Among the global regulators, in-
creased overproduction of MarA, SoxR, and RamA has
been associated with the overexpression of acrAB-TolC
operon contributing to CHX resistance (Curiao et al.
2015).

1.2. Octenidine

Octenidine dihydrochloride (OCT) is a positively
charged surfactant belonging to the bispyridine group.
Its structure contains two independent cationic active
centers connected by a long aliphatic hydrocarbon
chain. OCT demonstrates a wide antimicrobial spec-
trum, being effective against Gram-positive cocci, in-
cluding MRSA strains, and Gram-negative bacteria. It
also targets plaque-forming bacteria, including Acti-
nomyces and Streptococcus spp., as well as Chlamydia,
Mycoplasma, and various fungi (Hubner et al. 2010b).
It shows limited virucidal effectiveness against hepati-
tis B and herpes simplex viruses (Sathiyamurthy et al.
2016). Recently, the OCT-based formulation was found
to be effective against SARS-CoV-2 virus (Smeets et al.
2021, Steinhauer 2022 et al. 2022). Moreover, OCT is
a potentially active against Acanthamoeba trophozoites

and cysts at concentrations used in commercially
available products (Hamad 2023, Wekerle et al. 2020).

Studies on OTC’s mechanism of action have shown
that first point of its attachment in Gram-negative bac-
terial cells is the outer membrane. As a cationic mol-
ecule, OCT has a high affinity for anionic bacterial
surface components, e.g. lipopolysaccharides. Due to
electrostatic interactions, OCT binds to the surface of E.
coli cells and then penetrates through the lipopolysac-
charide (LPS) layer into the interior of the outer mem-
brane. Analysis of zeta potential changes in response
to increasing OCT concentrations revealed that neu-
tralization of the negative surface charge of cells occurs
already at a very low concentration of octenidine (10°°
%). At this stage, no inhibition of bacterial growth was
observed, which indicates that surface neutralization is
the first step of action, but not sufficient to kill the cell.
The hydrocarbon chains of OCT rapidly interact with
the hydrophobic core of the outer membrane, lead-
ing to its significant disruption through the so-called
hydrophobic mismatch. As a result, subsequent OCT
molecules can penetrate deep into the bacterial cell,
reaching the inner membrane. To confirm that OCT
also interacts with the inner membrane, a depolariza-
tion assay with the membrane potential-sensitive dye,
i.e. 3,3'-dipropylthiadicarbocyanine iodide (DiS-C,-5),
was used. Upon disruption of the membrane integri-
ty, the dye is released, which causes an increase in the
fluorescence signal. Application of 0.0001% OCT in-
duced a rapid increase in fluorescence, indicating that
OCT effectively depolarizes the inner membrane. As a
consequence, the integrity of both the outer and inner
membranes is disrupted by OCT, leading to cell lysis
(Malanovic et al. 2020).

Ponnachan et al. (2019) investigated the effect of
OCT on yeast cells. They showed that OCT affects
C. auris cell integrity in a concentration-dependent
manner, leading to its damage and, at higher con-
centrations, full disintegration. Electron microscopy
studies showed that after 6 hours of incubation with
1 pg/ml octenidine resulted in a reduction of the cell
envelope of C. auris (clinical isolates), which suggests
the beginning of cell disintegration. As the octenidine
concentration increased to 2 pg/ml and 5 pg/ml, the
cell structure was increasingly damaged. More serious
damage to yeast cells, leading to leakage of their con-
tents, was visible after 24 hours of incubation at a con-
centration of 2 pg/ml, and complete lysis occurred at a
concentration of 5 ug/ml. OCT also exhibits antifungal
activity against C. albicans (Fang et al. 2023). At 1 uM,
a cells reduction of 3.22 log;, was observed, while 2
uM caused a 5.32 log;, reduction. At 4 uM, OCT com-
pletely eliminated C. albicans cells and inhibited bio-
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film formation by 92.54%, but mature biofilms were
eradicated by 71.88%. At 8 uM, mature biofilms were
completely removed.

In the case of S. aureus, 1 mM OCT reduced plank-
tonic cells by > 3 logio and 2 mM OCT led to complete
eradication. It also inhibited biofilm formation and re-
moved mature biofilms at 5 mM and 10 mM concen-
trations (Amalaradjou and Venkitanarayanan 2014).
OCT was also effective against P. aeruginosa biofilms
after 30 minutes of exposure to a 0.1% solution (Jun-
ka et al. 2014). A. baumannii biofilm was completely
eliminated by OCT after 5-10 minutes of exposure to
2 0.9% (15 mM) and 0.6% (10 mM) solutions, respec-
tively (Narayanan et al. 2016).

OCT effectiveness tests were also carried out in
accordance with EN standards including additional
pathogenic species. In the medical area, ENs require
testing only on C. albicans (effectiveness against yeast),
and on S. aureus, P. aeruginosa and E. coli (effective-
ness against bacteria). The fungicidal assay by quan-
titative suspension tests were performed according to
EN 13624 (a phase 1 step 1), including MDR yeast C.
auris (Gugsch et al. 2024). The yeast-killing efficacy of
OCT-impregnated washing mitts was demonstrated
at concentrations of 80%, 50% and 10% against three
Candida species tested (C. auris DSM 21092, C. au-
ris DSM 105986 and C. albicans ATCC 10231) after a
30-second contact time under low organic load con-
ditions. At lower concentrations, C. albicans showed
greater resistance compared to C. auris. At 1% concen-
tration, C. auris strains achieved > 4 log  reductions,
with C. albicans showing 2.19 log  reductions. An
OCT concentration of 0.5% proved to be ineffective
against both C. auris strains (Gugsch et al. 2024).

In a study conducted in accordance with EN 13727,
a bactericidal effect of OCT was demonstrated. Expo-
sure to a 0.01% OCT solution led to a > 5 log, reduc-
tion in clinically relevant bacterial species, including
E. coli, K. pneumoniae, E. cloacae, A. baumannii, and
P, aeruginosa, within just 1 minute of contact in both
clean and dirty conditions. In addition, a concentra-
tion of 0.0001% OCT required a longer exposure time
of 2.5 minutes to achieve a reduction of > 5log,  (Alva-
rez-Marin et al. 2017).

The antiseptic preparation containing 0.1% OCT
and 2% phenoxyethanol showed significant antimicro-
bial efficacy in the test conducted using the quantita-
tive suspension method based on EN 13727. After 30
minutes of exposure, a 4.77 log  reduction in P. aeru-
ginosa DSM-939 was observed with 0.3 ml of the solu-
tion, as well as a 6.18 log,  reduction in both S. aureus
DSM-799 and the clinical MRSA strain. Additionally,
when the tested volume of the antiseptic solution was
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increased to 1 ml, complete elimination of MRSA and
P aeruginosa biofilm was observed within 72 hours
(Rembe et al. 2020). The study conducted according
to EN 13727 showed that the application of a solu-
tion containing 0.1% OCT and 2% phenoxyethanol
(Octenisept) to wound exudate reduced the number of
microorganisms by at least 5 log, in just 15 seconds.
Meanwhile, a wound irrigation solution with 0.05%
OCT (Octenilin) also demonstrated antimicrobial ef-
ficacy but required 30 seconds of contact to achieve
a similar level of bacterial reduction (Augustin et al.
2023).

OCT is commonly available as a 0.1% solution or
aerosol, usually in combination with 2% phenoxyeth-
anol, e.g. on the product Octenisept. It’s used for skin
disinfection before surgical procedures, as well as for
managing wounds, mucous membranes, and condi-
tions in the oral cavity. The antimicrobial efficacy of
Octenisept is the result of the activity of both ingredi-
ents. OCT can also be formulated with 1-propanol or
2-propanol. Lozenges containing 2.6 mg of OCT are
used in the treatment of inflammatory conditions of
the oral cavity. A summary of commercially available
products, including their concentrations and indica-
tions, is presented in Table I. In the case of chronic
wounds, it is recommended to use products containing
0.05% OCT, which are widely available in the form of
gels or rinsing solutions, often enriched with a surfac-
tant such as ethylhexylglycerin. The gel formulation is
especially useful for antiseptic treatment in burn vic-
tims, exhibiting greater efficiency than silver and iodo-
phores in these instances. A solution of 0.1% OCT and
2% phenoxyethanol is efficacious for the management
of acute, contaminated, and traumatic wounds, includ-
ing those colonized by MRSA (Kramer et al. 2018).
The alcohol-based skin disinfectant containing OCT
(propan-1-ol 30%, propan-2-ol 45%, octenidine dihy-
drochloride 0.1%) demonstrates greater effectiveness
in reducing and preventing microbial recolonization
around the insertion sites of central venous catheters
and extracorporeal catheters compared to the disinfec-
tant containing propan-2-ol (63%) and benzalkonium
chloride (Lutz et al. 2016). OCT is an important com-
ponent of strategies to prevent hospital infections and
improve patient safety in intensive care units (ICUs).
The use of 0.08% OCT impregnated wipes for patient
bathing has been shown to be effective in the preven-
tion of primary bacteremia associated with ICU stay
(Schaumburg et al. 2024).

OCT-based antiseptics are used for a much shorter
period of time than CHX-based antiseptics. Therefore,
the molecular basis for the decrease in bacterial and
fungal susceptibility to OCT is less well understood.
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Recently, such analyses have been conducted on strains
from the Enterobacterales order. Studies have shown
that K. pneumoniae can adapt to increased exposure to
OCT by mutations in the SmvA pump (A363V, L364Q,
Y391N, A363T, A368T, A474V) belonging to the MFS
family (Wand et al. 2019). The AdeABC efflux pump
of the RND family has been reported to extrude OCT
from the bacterial cell in A. baumannii (Meyer et al.
2022). Efflux pumps that actively remove disinfectants
from bacterial cells to the outside are summarized in
Table II. A single nucleotide deletion in K. pneumoniae
was also found in the genes encoding the RamR pro-
tein, which belongs to the TetR/AcrR family of tran-
scriptional regulators. In Klebsiella oxytoca, mutations
were identified in the gene encoding the Bm3R1 pro-
tein, which also belongs to the TetR/AcrR family and
in E. cloacae in the gene encoding OmpX, a precursor
of the outer membrane protein (Lescat et al. 2021).

1.3. Iodophores

Iodophors are compounds that release iodine, cre-
ated by combining iodine with a solubilizing agent in
water-based solutions, as iodine itself is unstable in
water. One common example of an iodophor is povi-
done-iodine (PVP-I). Povidone-iodine is created by
combining iodine molecules with polyvinylpyrroli-
done (PVP), which makes it water-soluble. In this com-
pound, PVP functions as a carrier for iodine, allowing
it to absorb and transport iodine without chemically
reacting with it. The iodine itself is the active ingredi-
ent in PVP-I (Babalska et al. 2021). PVP facilitates the
release of free iodine near the cell membranes of mi-
croorganisms, which then penetrates the membrane,
causing its damage and loss of structural integrity. Af-
ter entering the cell, iodine denaturants the structure of
nucleic acids and disrupts the basic energy processes of
the cell, such as electron transport, cellular respiration,
and protein synthesis. These cell function disorders
ultimately lead to cell death (Williamson et al. 2017).
The more diluted the PVP-I solution, the higher the
concentration of free iodine in it. This occurs because
dilution weakens the binding of iodine to its carrier.
Consequently, solutions with lower concentrations
(around 0.1-1%) tend to act faster and are more effec-
tive at killing bacteria compared to those with high-
er concentrations, such as the 10% solution (Babalska
et al. 2021). Determination of the efficacy of PVP-I at
different pH according to EN 27027 and the National
Committee for Clinical Laboratory Standards M27-A2
showed that with increasing pH, the antibacterial ef-
ficacy of 10% PVP-I was significantly reduced against
S. aureus and P. aeruginosa (Wiegand et al. 2015). The

presence of organic compounds, such as bovine serum
albumin, can also diminish the effectiveness of PVP-I
as a disinfectant. Studies have shown that the presence
of albumin leads to a reduction in the antibacterial ef-
ficacy of PVP-I. Specifically, an albumin concentration
0f 0.01875% caused a decline in the antibacterial activ-
ity by PVP-I (Kapalschinski et al. 2017).

PVP-Iexhibits broad-spectrum antimicrobial activ-
ity, targeting a wide range of microorganisms, includ-
ing both Gram-positive and Gram-negative bacteria,
Mycobacterium, fungi (i.e. Candida and Trichophyton
species), and protozoa. With prolonged exposure, it
also demonstrates activity against spores and various
viruses, such as multiple strains of the Influenza virus
and Ebola virus (Lachapelle et al. 2013; Williamson et
al. 2017).

In the case of a variety of clinical Candida spp.
isolates, including C. albicans associated with vulvo-
vaginal candidiasis, PVP-I at an 8% concentration
demonstrated significant fungicidal activity in a test
conducted according to EN 1275 (phase 1). After 60
minutes of exposure, 8% PVP-I eliminated all Candida
spp. isolates, achieving a reduction of >4 log, (Hacio-
glu et al. 2022). Furthermore, a quantitative suspension
test by EN 13624 (phase 2, step 1) was used to evaluate
yeasticidal activity, showing that 10% PVP-I demon-
strated very high efficacy against C. auris, reducing the
yeast count to > 4.5 log,  within 2 minutes of contact.
However, when tested against C. albicans ATCC 10231,
this time was not sufficient (Moore et al. 2017). Sahiner
et al. (2019) also evaluated the bactericidal and fun-
gicidal efficacy of 7.5% PVP-I solution according to
EN 13727 and EN 13624. P. aeruginosa ATCC 15442
and E. coli K12 NCTC 10538 showed high sensitivity,
reaching a bacterial cells reduction of more than 5 log
after 1 minute of exposure, regardless of conditions.
In contrast, S. aureus ATCC 6538 required 5 minutes
to reach the same reduction level in dirty conditions,
while in clean conditions, effectiveness was observed
after 1 minute. C. albicans ATCC 10231 showed a sim-
ilar trend: the required 4 log  reduction was reached
after 5 minutes of exposure under dirty conditions,
and after 1 minute under clean settings. Further, no
fungicidal activity was observed against A. brasiliensis
in either clean or dirty conditions, as the log reduction
remained below the required threshold after 1 and 5
minutes of exposure.

PVP-I is available in various formulations, includ-
ing antiseptic ointments, solutions, and gels, most
commonly in 7.5% and 10% concentrations. These
preparations are used for the treatment of burns and
wounds, as well as for preoperative skin disinfection
and surgical hand scrubbing. A summary of commer-
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cially available products, including their concentra-
tions and indications, is presented in Table I.

Clinical trials have shown that a combination of 1%
PVP-I (containing 10% free iodine) and 50% isopro-
pyl alcohol is as effective as 2% CXG in 70% ethanol
in preventing surgical site infections following cardiac
and abdominal surgeries (Widmer et al. 2024). Simi-
larly, no significant difference was observed in infec-
tion risk reduction between 5% PVP-I in 69% ethanol
and 2% CHX in 70% isopropanol for cardiac surgery
patients (Boisson ef al. 2024).

PVP-I-based mouth rinses are considered a valu-
able protective tool against infections in the oral cavi-
ty and respiratory tract. Tests conducted according to
the bactericidal quantitative suspension test EN 13727
demonstrated that a 0.7% povidone-iodine solution,
diluted to 0.23% (1:30 dilution), exhibited significant
bactericidal activity against K. pneumoniae DSM 16609
and Streptococcus pneumoniae ATCC 49619, achieving
a cells reduction of over 5 log, within just 15 seconds
of exposure. Compared to plain soft soap, the scalp and
skin cleanser containing 7.5% PVP-I is proven to be
more effective in eliminating E. coli and mouse norovi-
rus (MNV) (Eggers et al. 2018b).

PVP-I-based antiseptic products are also effec-
tive in preventing and eradicating microbial biofilms.
Research has demonstrated that C. auris biofilms ex-
hibit increased tolerance to PVP-I as compared to
planktonic cells. PVP-I concentrations in the range
of 1.25-2.5% were required to inhibit the biofilms
growth after 5 min of exposure. Prolonged exposure
to 10-30 minutes reduced required concentrations to
0.625-1.25%. The highest efficacy in eliminating bio-
films was demonstrated by a 10% PVP-I, which com-
pletely destroyed all stages of the biofilm (Kean et al.
2018). Also, a 10% PVP-I solution demonstrated high
efficacy in eliminating S. aureus biofilm, achieving a
99% reduction after 30 minutes of exposure (Guim-
araes et al. 2012). The efficacy of PVP-I in eliminating
MSSA and MRSA biofilm from titanium surfaces was
assessed. Irrigation for 3 minutes with a PVP-I solu-
tion at a concentration of 0.8% for MSSA and 1.6% for
MRSA resulted in a = 99.9% reduction of biofilm (Se-
meshchenko et al. 2025). Overnight incubation with
subinhibitory concentrations of PVP-I (0.17%, 0.35%,
0.7%) suppressed the ability of S. epidermidis 1457 and
S. aureus RN4220 to form biofilms. In S. epidermidis,
this inhibition was due to an increase in the level of
icaR, a transcriptional repressor of the icaADBC op-
eron, which is responsible for the production of poly-
saccharide intercellular adhesin (PIA). In S. aureus, no
correlation was found between reduced icaADBC op-
eron and icaR gene expression (Oduwole et al. 2010).
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A 10% PVP-I effectively reduced the number of viable
cells in both single-species biofilms (C. auris NCPF
8973, S. aureus NCTC 10,833, S. epidermidis ATCC
35984) and multi-species biofilms (C. auris + S. aureus,
and C. auris + S. epidermidis), reducing their numbers
by more than 4 log, . The presence of Staphylococcus
spp. in mixed biofilms did not improve the ability of
C. auris to persist under PVP-I exposure, indicating its
high efficacy against multi-species biofilms (Giilmez
et al. 2022). On the other hand, 7.5% PVP-I did not
demonstrate full efficacy in eradicating P. aeruginosa
biofilm (Junka et al. 2014). After 15 minutes of expo-
sure, a 15% reduction in biofilm was noted, while after
30 minutes the efficacy increased to 66%.

The activity of PVP-I against viruses is extremely
important. PVP-I can be employed as a nasal spray or
nasal irrigation for the nasopharyngeal clearance of
the SARS-CoV-2 virus in patients with COVID-19.
Among various concentrations, a 0.5% solution used
for nasal irrigation has shown the greatest effective-
ness, while among nasal sprays, the best results were
observed with the 0.6% solution (Arefin et al. 2022).
PVP-I demonstrates excellent virucidal activity against
the Ebola virus. PVP-I formulations, including 4% skin
cleanser, 7.5% surgical scrub, 10% PVP-I solution, and
3.2% PVP-I in 78% alcohol, significantly decreased
EBOV virus titers, achieving a cells reduction ranging
from 5.66 to 6.84 log, after 15 seconds of application
(Eggers et al. 2015). Furthermore, inactivation tests
conducted according to the virucidal quantitative sus-
pension test EN 14476 demonstrated that 0.23% PVP-I
solution effectively inactivated SARS-CoV, MERS-CoV
and influenza A virus (HIN1) (Eggers et al. 2018a).

1.4. Alcohols

Among alcohols, ethanol and isopropanol (pro-
pan-2-ol, 2-propanol) are most commonly used as
antiseptics. They are effective against Gram-positive
and Gram-negative bacteria, Mycobacterium, yeasts,
and molds (Williamson et al. 2017; Stauf et al. 2019).
Ethanol is capable of inactivating all enveloped virus-
es, including Coronaviridae, Herpes, Vaccinia, and
Influenza viruses, as well as several non-enveloped vi-
ruses such as Adenovirus and Rotavirus. In contrast,
isopropyl alcohol is ineffective against non-enveloped
viruses like Adenovirus but remains effective against
lipid-enveloped viruses, including coronaviruses
(Parikh and Parikh 2021). However, neither ethanol
nor isopropanol eliminate bacterial spores. The opti-
mal bactericidal efficacy is noted during the 60%-90%
concentration ranges, with a significant reduction in
effectiveness occurring when concentrations fall be-
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low 50% (Williamson et al. 2017). Alcohols exert their
antimicrobial effects by denaturing and coagulating
proteins, which leads to a loss of structural integrity of
cell membranes. This results in increased membrane
permeability, which is manifested by leakage of intra-
cellular components. As a result, cellular processes, in-
cluding metabolic functions and enzyme activity, are
impaired. Ultimately, this cascade of events causes cell
lysis (Elekhnawy et al. 2020).

The antimicrobial efficacy of alcohol depends on
the specific conditions under which it is used. The
presence of viscosity-increasing substances can hin-
der alcohol penetration into microbial cells, reducing
its disinfectant effectiveness. For example, in mucus
samples (both artificial and sputum), the bacteri-
al survival rate exceeded 10% after application of an
alcohol-based disinfectant, indicating significantly
compromised antibacterial effectiveness. Additional-
ly, ethanol diffusion ability into mucus was inversely
related to its viscosity, which was associated with in-
creased bacterial resistance (Hirose et al. 2017). Etha-
nol is widely used in professional disinfection practices
in both healthcare and veterinary settings. A summa-
ry of commercially available products, including their
concentrations and indications, is presented in Table I.
In healthcare facilities, a solution of 69% ethanol com-
bined with 5% PVP-I has been shown to be effective for
skin antisepsis prior to surgical procedures, for exam-
ple cardiac surgery (Boisson et al. 2024). In veterinary
medicine, for instance, 74.1% ethanol mixed with 10%
propan-2-ol is used for skin antisepsis in dogs prior to
medical procedures (Eigner et al. 2023). No instances
of alcohol tolerance have been observed in bacteria like
staphylococci and streptococci, nor have any mecha-
nisms of acquired alcohol resistance been discovered
(Williamson et al. 2017).

Hand sanitizer gel and foam containing 70% eth-
anol demonstrated high antimicrobial efficacy in in
vitro time-Kkill tests according to ASTM E2783-10. At
15 seconds of contact, S. marcescens reduction was >
5.8 log,, (gel) and > 4.7 log, , (foam), and MRSA reduc-
tion was > 5.8 log, (gel) and > 4.2 log  (foam). ASTM
E1174 testing has confirmed the effectiveness of these
products. After the first application, a reduction of at
least 2 logio in microorganism count was observed,
and after the tenth application, the reduction reached
at least 3 logo, for both 5 ml and 2 ml volumes (Ed-
monds et al. 2012).

Bactericidal activity against enterococci Entero-
coccus hirae ATCC 10541, E. faecium ATCC 6057 and
Enterococcus faecalis ATCC 47077 was assessed in ac-
cordance with EN 13727. After 5 min exposure to 40%
ethanol significant differences in species tolerance were

observed. E. faecium and E. faecalis showed the lowest
susceptibility, with reductions of only 1.24 and 4.11
log . respectively. On the other hand, E. hirae showed
the highest sensitivity at 40% concentration, with cells
reduction of 7.31 log, . Ethanol concentrations of 50%
or higher consistently resulted in reductions of at least
5 logio after just 30 seconds of exposure (Suchomel et
al. 2019).

The fungicidal activity of ethanol was tested in a
quantitative suspension test, according to EN 13624.
Reference strains were included: C. albicans ATCC
10231, Candida tropicalis ATCC 13803, A. brasiliensis
ATCC 16404, and Aspergillus niger ATCC 6275, as well
as clinical antifungal-resistant isolates. After 1 minute
of exposure, ethanol at 50% concentration showed ef-
ficacy against yeasts, achieving > 4.0 log, , reduction,
while an 80% concentration was effective against
molds (Stauf et al. 2019).

The effect of alcohol solutions on biofilm forma-
tion depends on the bacterial species and alcohol
concentration. In one study, a comparison of 41 etha-
nol concentrations from 0% to 20% revealed that low
concentrations stimulated S. aureus biofilm formation,
with the highest biofilm stimulation noted at 7% eth-
anol. Biofilm formation then gradually decreased with
increasing ethanol concentration up to 20%. Further-
more, extending incubation from 24 to 48 hours in-
creased biofilm production (Vaezi et al. 2020). Impor-
tantly, higher concentrations of ethanol, starting from
30% and upwards, reduce the ability to form biofilms.
Alonso et al. (2018) showed that therapy with both
concentrations of 40% and 70% ethanol almost 100%
reduced metabolic activity in 72-hour biofilms of S.
aureus ATCC 29213, S. epidermidis (clinical isolate),
E. faecalis ATCC 33186, C. albicans ATCC 14058, and
E. coli ATCC 25922. However, 70% ethanol was more
effective against 48-hour biofilms.

Similarly, exposure to subinhibitory concentrations
of ethanol (1/4 MIC, 2.5% and 1/2 MIC, 5.0%) signifi-
cantly increased the ability of Salmonella Enteritidis to
form biofilm, with a stronger effect observed at 5.0%.
This suggests that sublethal ethanol stress may trigger
mechanisms that promote biofilm development. It was
examined whether there were changes in attachment
genes (adrA, csgB, csgD), quorum sensing genes (luxS,
sdiA), and sRNAs (ArcZ, CsrB, OxyS, SroC). Expres-
sion analysis showed that the [uxS gene was significant-
ly upregulated, with 2.49-fold and 10.08-fold increases
at 2.5% and 5% ethanol, respectively. The remaining
genetic elements examined did not alter their activity
in response to ethanol exposure. Similarly, in the case
of P. aeruginosa, ethanol at concentrations of 1% and
2% increased biofilm formation (He et al. 2022).
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In tests conducted according to EN 13727 and EN
13624, isopropanol at a concentration of 70% has been
shown to have an effective bactericidal and fungicidal
effect, regardless of the presence of organic substanc-
es. The preparation provided a reduction of > 5 log |
for bacteria (S. aureus ATCC 6538, E. coli K12 NCTC
10538, P. aeruginosa ATCC 15442 and E. hirae ATCC
10541) and > 4 log, , for fungi (C. albicans ATCC 10231
and A. brasiliensis ATCC 16404) after 1 and 5 minutes
of exposure, in both clean and dirty conditions (Sahin-
er et al. 2019).

2. Adaptation to antiseptics

To investigate how bacteria adapt to increasing
concentrations of antiseptics, methods involving a se-
ries of passages in a concentration gradient are used.
There are two the most commonly used approaches
to perform stepwise transfers of microorganisms in
liquid media: (a) subsequent transfers of the obtained
mutants to new media with a whole series of antisep-
tic dilutions in 96-well microtiter plates - gradient
method, (b) step-by-step transfer of each obtained
mutants to a new medium with a 1.5-2 times higher
concentration of the antiseptic in the tube - increment
method (Krajewska et al. 2024). In both methods, sub-
MIC concentrations of antiseptics are also included in
the tests. In the gradient method, a 96-well microtiter
plate was prepared as for determining the MIC value of
the tested compound as antiseptic. Such a subsequent
transfer approach to the study of the ability to adapt
to chlorhexidine has been described for a individual
bacterial / yeast clinical isolates and laboratory strains
(Zheng et al. 2022) and for mix oral microorganisms
present in supragingival plaque samples (Fruh et al.
2022). To perform the next passage, the bacterial inoc-
ulum is taken from the highest concentration of anti-
septic at which growth still occurs (the sub-MIC value)
and transferred to series of fresh medium containing
antiseptic dilutions. Following incubation, the MIC
was redetermined and another passage was performed
in the same manner (Fruh et al. 2022). An example of
such a procedure is the approach used by Zheng et al.
(2022) in which the cultured overnight of P. aeruginosa
were transferred to LB broth containing various CHX
concentrations (1/2 x MIC, 1 x MIC, 2 x MIC, and 4
x MIC). After 24 h, the bacterial culture suspension
that showed visible growth at the highest CHX con-
centration were transferred to series of fresh medium
containing antiseptic dilutions and resubjected to the
same procedure. This method resulted in P. aeruginosa
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mutants with CHX MICs > 64 pg/ml after 10 passages.

Another approach by the increment method was
described by Zhang et al. (2019) in which clinical K.
pneumoniae strains were serially passaged in test tubes
with gradually increasing concentrations of antimi-
crobial agents. Bacteria were first inoculated into tube
containing 10 ml of nutrient broth supplemented with
the initial concentration of antiseptic (1/2 MIC of ch-
lorhexidine). The cultures were incubated at 35°C for
up to 48 h. Then, 100 pl of the bacterial suspension
from the tube was transferred to a tube containing
twice increased concentration of antiseptic (e.g., the
chlorhexidine concentration increased with each pas-
sage) and incubated. Bacterial cultures were further
passaged until the maximum level of tolerance was
reached, which corresponded to an MIC of 128 pg/ml.
However, Gregorchuk et al. (2021) used a modified in-
crement method. An overnight culture of E. coli K-12
was inoculated into liquid LB medium containing 1/5
of the MIC values of chlorhexidine. The following day,
the resulting culture was re-inoculated into fresh liq-
uid LB medium also containing 1/5 of the MIC of CHX
and grown until 12 days to expose the culture to pro-
longed sub-inhibitory CHX. The obtained culture was
then inoculated into medium at a concentration equal
to the MIC value of CXH and, in the next step, above
the CHX MIC value. Yet another modification of the
increment method was proposed by Karpinski et al.
(2025) who studied in a 96-well plate the ability of P
aeruginosa strains to adapt to antiseptics - CHX and
OCT - in the range of 0.5% to 4.5% concentrations in
which they are used in commercial antiseptic products.

In contrast to the previous methods, another ap-
proach used by Bleriot et al. (2020) consisted of K.
pneumoniae exposed for two weeks to 1/4 MIC of CHX
in liquid media with aeration. The antiseptic was re-
placed every 24 h. In this case, the CHX concentration
was kept constant and bacteria were exposed to this
sub-MIC concentration of the antiseptic throughout
the experiment.

Another method of long-term exposure of bacteria
to OCT was used in a study using a hospital sink drain
system that was connected to an automated drain mod-
el. The procedure included a 21-day acclimatization
period, during which the system functioned without
the addition of antiseptic, allowing the original micro-
biota to be maintained. Then, for 62 days, water flow
was started four times a day for 40 seconds, and after
10 seconds a preparation containing 0.3% OCT added
10 seconds after the start of each flow cycle. After this
period, the antiseptic was discontinued for 35 days and



ANTISEPTICS: THEIR CHARACTERISTICS, APPLICATION AND CHALLENGES IN THE 21ST CENTURY

127

RESULTING FROM THE SPREAD OF ANTIMICROBIAL RESISTANCE (AMR)

subsequently resumed for an additional 21 days (Gar-
ratt et al. 2021).

Unlike liquid media, solid media can also be useful
for examining the impact of bacterial exposure to an-
tiseptics, including changes in bacteria’s sensitivity to
antiseptics and on the bacterial resistance profiles to
drugs. A Soft Agar Gradient Evolution (SAGE) Plates
method in which a concentration gradient is created by
the diffusion of an antiseptic agent in agar can be used
(Krajewska et al. 2024). In this approach, a concentra-
tion of antiseptic equivalent to half the minimum in-
hibitory concentration is added to molten nutrient agar
and poured onto a petri dish set at an angle, creating a
sloped layer. After the agar had solidified, the dish was
placed horizontally and another layer of nutrient agar
was poured on top, this time without the addition of
antiseptic. Thanks to the angle setting in the first stage,
a concentration gradient was created - in places where
the enriched layer was thicker, the diffusion of the bio-
cide was greater, and in thinner places - weaker. Sub-
sequently, bacteria were inoculated onto the prepared
plate, starting from the area with the lowest antiseptic
concentration. Colonies that grew in the area with the
highest antiseptic concentration were subcultured to
another plate prepared in the same manner but with
twice the antiseptic concentration. The procedure was
continued, doubling the concentration of the antisep-
tic each time, until no growth occurs. This method
allowed obtaining E. coli mutants with a twofold in-
crease in antiseptic MIC values after hydrogen perox-
ide exposure (32 to 64 ug/ml) and P. aeruginosa mu-
tants after benzalkonium chloride exposure (64 to 128
pg/ml). In contrast, S. aureus exposed to CHX showed
no change in CHX MIC (remained at 7.8 pg/ml), but
developed cross-resistance to oxacillin (the MIC value
rising from 0.2 to 2 ug/ml) (Adkin et al. 2022).

Another technique for preparing solid medi-
um-based plates with an antiseptic concentration
gradient was used by Cowley et al. (2015) The aim of
this study was to assess the effect of the product for-
mulation on the development of bacterial insensitivity.
Substances in the form of an aqueous solution and as
a formulation (50 pl) were applied to agar plates with
TSA medium using an automated spiral plater, which
allows obtaining a 100-fold concentration gradient of
substances on the plate. The plates prepared in this
way were dried for one hour, and then a pure culture
of bacteria was applied to them. Bacteria growing at
the highest concentration were cultured on a new plate
containing the same concentration gradient. When
growth was obtained over the entire concentration

range, the bacteria were inoculated to new plate with
a 5-fold higher concentration of the substance. This
procedure was repeated 14 times (Cowley et al. 2015).

2.1. Exposure to chlorhexidine and changes in sus-
ceptibility profiles

CHX is the most extensively studied antiseptic.
Both Gram-negative and Gram-positive bacteria, as
well as fungi, have been long-term exposed to CHX.
CHZX has sometimes been used as a reference antisep-
tic.

Zhang et al. (2019) found that prolonged exposure
to CHX, using the increment method, increased the re-
sistance of K. pneumoniae. In all three strains, the CHX
MIC reached 128 pg/ml, and this adaptive resistance
remained stable even after about 10 passages in CHX-
free medium. Furthermore, the adapted to CHX strains
developed cross-resistance to colistin. This CHX re-
sistance was associated with higher expression of the
cepA gene in all strains, whereas the gacE and qacE1
genes were not found. Additionally, all adapted strains
carried mutations in PmrB, particularly Leu82Arg. The
Leu82Arg mutation is suspected to play a key role in
colistin resistance. What’s more, those strains had dif-
ferent growth rates than their wild-type counterparts.
Similarly, another study has shown acquired cross-re-
sistance to colistin in two CHX-exposed clinical strains
of carbapenemase-producing K. pneumoniae: ST258-
KPC3 and ST846-OXA48. After e xposure to chlor-
hexidine, the MIC of the tested strains increased 4-fold
for ST258-KPC3 from 9.8 pg/ml to 39.1 pg/ml and for
ST846-OXA48 from 19.5 pg/ml to 78.2 pg/ml. In ad-
dition, a 32-fold increase in the MIC of colistin was
observed in strain ST846-OXA48. No differences in
susceptibility were observed for the other antibiotics
tested, as no changes in MIC values were detected. In
the ST258-KPC3 strain, the expression of the smvA
gene, which encodes the efflux pump, was increased
(log, fold change: 3.635), while ST846-OXA48 was
characterized by high expression of the pmrD (log, fold
change: 2.36) and pmrK (log, fold change: 1.57) genes,
which are related to lipid A synthesis. In the plasmid
of the ST846-OX A48CA strain, a novel toxin/antitoxin
system (PemI/PemK) was identified. It was further ob-
served that expression of gene encoding the PemK tox-
in resulted in reduced biofilm formation (Bleriot et al.
2020). All microbial mutants obtained after exposure
to chlorhexidine, changes in their antiseptic sensitivity
and drug susceptibility profiles, and genotypic changes
are listed in Table III.



Table III

Bacterial and yeast mutants obtained by stepwise exposure to the following antiseptics:
chlorhexidine, octenidine, povidone-iodine, and ethyl alcohol

Microorganism | Antiseptic Changes in sensitivity to Phenotypic/Genotypic changes in mutants References
used for (x-fold increase in MIC value)?
exposure Antiseptic Antibiotics/ Chemotherapeutics
Citrobacter spp. | octenidine | 2-fold increase in | 4-fold increase in MIC for ampicillin, pipera- no significant difference in the growth rates and biofilm forma- | (Garratt et al. 2021)
MIC cillin, ceftazidime, and chloramphenicol, 2- to tion, significant virulence reduction / mutations in marR and
4-fold increase in MIC for ciprofloxacin and envZ
meropenem
Enterobacter spp. | octenidine | 2-fold increase in | cross-resistance to ciprofloxacin, chlorampheni- | growth retardation, no significant difference in biofilm forma- (Garratt et al. 2021)
MIC col, and ceftazidime tion, no change in virulence / deletions SNPs® in malT and torA,
D21E mutation in SmvA
E. coli chlorhexi- | 2- to 4-fold in- no changes in antibiotic susceptibility cell shape change: narrowing, reduced average cell length, more | (Gregorchuk et al. 2021)
dine crease in MIC permeable membranes / changes in protein abundance levels:
upregulation: GadE, NfsA, NfsB, MdfA, PmrB, LpxL, downregu-
lation: CadA, Lon; changes in gene expression levels:
upregulation: emrAB, ompX, ompA, , gadE, mdtEE gadABC,
cadA, hdeABD, ydeN
downregulation: mlaA, cdaR, rob, soxS, ompT, ompF
ethyl alco- | no relevant MIC | no changes in antibiotic susceptibility nt®/ nt (Shepherd and Parker
hol changes 2023)
K. pneumoniae | chlorhexi- | 16- to 32-fold 128-fold increase in MIC for colistin different growth capacities / 8.88 to 11.95-fold higher expression | (Zhang et al. 2019)
dine increase in MIC of efflux pump gene cepA, mutation Leu82Arg in PmrB
4-fold increase in | 32-fold increase in MIC for colistin nt / overexpressed gene smvA, high expression of the pmrD and | (Bleriot et al. 2020)
MIC pmrK, identification of PemI/PemK TA system, PemK toxin
expression reduced biofilm formation
4-fold increase in | 8-fold increase in MIC for colistin colonies of irregular shape and rough surfaces / nt (Hashemi et al. 2019)
MIC
A. baumannii chlorhexi- |4-fold increase in | 16-fold increase in MIC for colistin colonies of irregular shape and rough surfaces / nt (Hashemi et al. 2019)

dine

MIC
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P, aeruginosa chlorhexi- | 8-fold increase in | 32-fold increase in MIC for colistin colonies of circular shape, slightly rough surface with undulat- | (Hashemi et al. 2019)
dine MIC ing margins / increased expression of OprE, LptD, TolB, TolA,
MurD, PagL, ClpB, SecG, SecB, SecA, ArcA, ArcB, ArcC, MexA,
AceE, AceF, FadA, FabV, AcpP1, Pil proteins
4- to 32-fold decreased susceptibility to imipenem, mero- nt / upregulation of mexA, mexC, mexE, mexX, downregulation | (Zheng et al. 2022)
increase in MIC | penem, levofloxacin, ciprofloxacin, ceftazidime, |of oprD
cefepime, and tobramycin, cross-resistance to
imipenem and ciprofloxacin
2- to 22-fold no changes in antibiotic susceptibility nt/ nt (Karpinski et al. 2025)
increase in MIC
>8-fold increase | 2- to 4-fold increase in MIC for amikacin, changes in membrane permeability / upregulation of mexX (Tag ElDein et al. 2021)
in MIC cefepime, and meropenem , 2-fold increase in
MIC for ciprofloxacin, ceftazidime, and colistin
octenidine | 16-fold increase | no changes in antibiotic susceptibility no significant difference in the growth rates and biofilm forma- | (Garratt et al. 2021)
in MIC tion, no change in virulence / mutations in smvR (TetR regula-
tor)
4- to 32-fold 4-fold increase in MIC for gentamicin and colis- | all mutants maintained unchanged virulence in the wax moth (Shepherd et al. 2018)
increase in MIC | tin, 2-fold increase in MIC for amikacin and larvae G. mellonella model, three showed a decreased growth
tobramycin rate / nt
3- to 12-fold no changes in antibiotic susceptibility nt/nt (Karpinski et al. 2025)
increase in MIC
povidone- | 4-fold increase in | no changes in antibiotic susceptibility nt/nt (Karpinski et al. 2025)
-iodine MIC
ethyl alco- | no relevant MIC | 15-fold increase in MIC for imipenem and azt- | reduced growth / nt (Shepherd and Parker
hol changes reonam, 10-fold increase in MIC for gentamicin, 2023)
8-fold increase in MIC for ceftazidime
E. hirae ethyl alco- | no relevant MIC | 4-fold increase in MIC for gentamicin nt / nt (Shepherd and Parker
hol changes 2023)
S. aureus chlorhexi- | 4- to 8-fold in- 4- to 512-fold increase in MIC for tetracycline nt / nt (Wu et al. 2016)
dine crease in MIC and amikacin, 2- to 512-fold increase in MIC for
cefepime and gentamicin, 8- to 512-fold increase
in MIC for meropenem, 2- to 64-fold increase in
MIC for ciprofloxacin
2- to 4-fold in- no changes in antibiotic susceptibility nt/ mutations in mepA, purt, pldB, glpD, and mprF (Renzoni and Frangois
crease in MIC et al. 2017)
povidone- | 2-fold increase in | nt inhibition biofilm formation, reduced hemolytic activity / down- | (Barakat et al. 2022)
-iodine MIC regulation of icaA, icaD, eno, epbs, fib, hla
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S. epidermidis ethyl alco- | no relevant MIC | no changes in antibiotic susceptibility nt / nt (Shepherd and Parker
hol changes 2023)
S. oralis chlorhexi- | 2-fold increase in | decrease in susceptibility to erythromycin, no significant difference in biofilm formation / nt (Friith et al. 2022)
dine MIC increased MIC for clindamycin, amoxicillin,
ampicillin
Streptococcus chlorhexi- | 2- to 8-fold in- resistance to erythromycin and tetracycline, increased biofilm formation / presence of ARGs: tetM, patA, (Auer et al. 2022)
spp. dine crease in MIC intermediate resistance to penicillin G and am- | patB, mefl, pbpX2, int, xis
picillin, intermediate or resistance to cefuroxime
and amoxicillin/clavulanic acid
G. adiacens chlorhexi- | 4-fold increase in | decreased susceptibility to erythromycin, clinda- | slight increase in the ability to biofilm formation / nt (Friih et al. 2022)
dine MIC mycin, increased MIC for penicillin G, tetracy-
cline, cefuroxime, ciprofloxacin
C. albicans octenidine | no relevant MIC | no changes in antibiotic susceptibility nt / nt (Spettel et al. 2025)
changes
chlorhexi- | no relevant MIC | no changes in antibiotic susceptibility nt/ nt (Spettel et al. 2025)
dine changes
N. glabratus octenidine | 2-fold increase in | no changes in antibiotic susceptibility nt/nt (Spettel et al. 2025)
MIC
chlorhexi- | 4-fold increase in | 64- to 256-fold increase in MIC for fluconazole, | nt/ mutations in PDRI, mutations in PMA1I, overexpression | (Spettel et al. 2025)
dine MIC 4- to 128-fold increase in MIC for posaconazole, | of CDRI
32- to 125 increase in MIC for voriconazole, 8- to
64-fold increase in MIC for itraconazole, 32- to
512-fold increase in MIC for isavuconazole

ARG - antibiotic resistance genes, * x-fold increase in MIC compared to the parental strain, "single nucleotide polymorphism, ‘not tested
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Cross-resistance to colistin was found not only in
K. pneumoniae but also in A. baumannii and P. aeru-
ginosa strains using the gradient method (Hashemi et
al. 2019). For K. pneumoniae the MIC value of colistin
increased from 2 pg/ml to 16 pg/ml, for A. baumannii
from 1 pg/ml to 16 pug/ml, and for P. aeruginosa from 1
pg/ml to 32 pg/ml. A potential mechanism of cross-re-
sistance to colistin may result from LPS modification,
which could be suggested by morphological changes
in the obtained mutants. Colonies of A. baumannii
and K. pneumoniae strains were characterized by ir-
regular shape and rough surface, while colonies of P
aeruginosa had slightly rough structure and wavy edg-
es. Differences in the protein composition of the resis-
tant P. aeruginosa strain were detected. These involved
increased overproduction of proteins including outer
membrane porin F, LPS assembly protein LptD, Tol-
Pal system protein TolB, Tol-Pal system protein TolA,
UDP-N-acetylmuramoylalanine-dglutamate ligase,
lipid A deacylase PagL, Chaperone protein ClpB, Sec
proteins, and efflux pump MexA (Hashemi et al. 2019).

Zheng et al. (2022) reported that P. aeruginosa mu-
tants selected through exposure to CHX by gradient
method exhibited 4- to 32-fold higher MICs. These
mutants showed reduced susceptibility to multiple an-
tibiotics, including imipenem, meropenem, levofloxa-
cin, ciprofloxacin, ceftazidime, cefepime, and tobramy-
cin. Reduced CHX susceptibility was linked to efflux
pump activity. qRT-PCR showed significantly upregu-
lated expression of mexA, mexC, mexE, and mexX, and
downregulation of oprD gene (Zheng et al. 2022).

Tag ElDein et al. (2021) used two methods to as-
sess the effect of CHX on the selection of P. aeruginosa
strains exhibiting cross-resistance to antibiotics. Resis-
tant strains were obtained using gradient method and
by a single exposure to a lethal concentration of CHX.
Of the 28 mutants, 12 showed at least an 8-fold MIC
increase of CHX compared to the parent strain. All of
these mutants exhibited a 2-fold to 4-fold MIC increase
of amikacin. Furthermore, seven of them became re-
sistant to meropenem (MIC change from 4 to 8 or to
16 pg/ml), while six shifted from full susceptibility to
intermediate resistance to ciprofloxacin (MIC change
from 1 to 2 pg/ml). Three mutants developed interme-
diate resistance to cefepime (MIC change from 4 to 16
pg/ml). In addition, some strains had higher MICs of
amikacin, ceftazidime, and colistin yet remained sus-
ceptible to these antibiotics. Two of the obtained mu-
tants demonstrated significantly decreased membrane
permeability, whereas the remaining mutants showed
increased permeability or no change. Exposure to 0.5
MIC of CHX resulted in an increase in mexX gene ex-
pression. In 7 out of 12 isolates, this increase was high,

reaching up to a 43-fold change. In contrast, 2 isolates
showed no overexpression of mexX following CHX ex-
posure.

The study conducted by Gregorchuk et al. (2021)
showed that E. coli after adaptation to increasing con-
centrations of CHX, using increment method, did not
develop cross-resistance to any of the tested antibiotics.
On the contrary, it resulted in increased susceptibility
to tobramycin, with a reduction in the MIC from 16
to 4 pg/ml. They also showed increased susceptibility
to antimicrobials, including QAC, cetyltrimethylam-
monium bromide, and cetyltrimethylammonium bro-
mide. At the same time, as a result of this adaptation,
three isolates showed reduced sensitivity to CHX, with
their MIC increasing from 2- to 4-fold compared to the
initial MIC value: changes from 2 ug/ml to 4 pg/ml in
two mutants, and to 8 pug/ml in one mutant. Proteome
analysis of the strain showing the highest phenotypic
stability revealed changes in the abundance of many
proteins, e.g. porin OmpE, lipid synthesis/transporter
MlaA, efflux pump MdfA, proteins controlling acid
resistance (GadE, CdaR), and antimicrobial stress-in-
ducible pathways Mar-Sox-Rob. Scanning electron mi-
croscopy (SEM) imaging revealed that adaptation to
CHX caused a change in cell shape, resulting in narrow-
ing, and in 2/3 of the isolates, it also reduced average
cell length. In addition, changes in the cell membrane
were investigated using a fluorescent dye (propidium
iodide) that does not pass through the membrane. The
results demonstrated that strains adapted to CHX had
more permeable cell membranes than the wild-type
strain. These findings suggest that E. coli adaptation to
increasing concentrations of CHX results in significant
phenotypic changes that may be detected using both
visual and fluorescence methods.

Wu et al. (2016) investigated whether subinhibitory
exposure to the antibiotics, chlorhexidine and Rhizo-
ma coptidis extract (RCE) induced cross-resistance or
reduced susceptibility in Staphylococcus spp. including
14 clinical isolates and the reference strain S. aureus
ATCC 25923. After exposure to sublethal concentra-
tions of chlorhexidine, most isolates showed no major
change in susceptibility, but six isolates showed a 4- to
8-fold increase in MICs, with MIC changes from 1.56-
0.78 pg/ml to 6.25 pug/ml, respectively. S. aureus ATCC
25923 exhibited cross-resistance to tetracycline and
cefepime (MICs changes from < 1 pg/ml to 8 ug/ml).
One isolate showed a > 512-fold increase in MIC of
amikacin, tetracycline, and gentamicin. No significant
change in susceptibility was observed for ciproflox-
acin in 4 isolates, gentamicin in 5 isolates, amikacin
in 2 isolates, cefepime in 3 isolates, and meropenem
in 5 isolates. Additionally, 7 strains exhibited reduced
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sensitivity to RCE. Most strains exposed to sub-MIC
tetracycline showed a 4-fold increase in MICs, except
for one strain. S. aureus ATCC 25923 also developed
resistance to ciprofloxacin and cefepime. Eleven S. au-
reus isolates exposed to tetracycline acquired cross-re-
sistance to five additional antibiotics, while three de-
veloped resistance to two or three others. Reduced
susceptibility to chlorhexidine and resazurin was ob-
served in strains exposed to sublethal concentrations
of tetracycline. After exposure to RCE, all tested strains
were found to be more resistant to RCE, with MIC val-
ues increased by 4- to 32-fold. Most of them showed
no significant change in CHX susceptibility, except for
three isolates that showed a 4- to 8-fold MIC increase.

Renzoni et al. (2017) used CHX as a reference an-
tiseptic in their polyhexanide study. Applying a step-
wise exposure by increment method, culturing MRSA
strains with increasing concentrations of CHX every
two days for 7 to 10 passages, they obtained mutants
with 2- to 4-fold increased antiseptic tolerance. In one
of the obtained CHX mutants, point mutations led
to amino acid changes in the MepA (an efflux pump
protein) and PurR (a DNA-binding transcriptional re-
pressor that regulates the expression of several genes
involved in the synthesis, metabolism, and transport
of purines) proteins. In the second CHX mutant, se-
quencing revealed mutations in genes (mprE pldB, and
glpD) involved in lipid metabolism resulting in amino
acid substitutions. For the obtained MRSA mutants
with reduced CHX susceptibility neither cross-resis-
tance with polyhexanide nor with antibiotics was ob-
served.

A total of 177 clinical isolates from early plaque col-
onizers were exposed to subinhibitory levels of CXG
using the gradient method (Auer et al. 2022). These
isolates included 112 Streptococcus spp., 19 Actinomy-
ces spp., 20 Rothia spp., and 26 Veillonella spp. After
exposure to the antiseptic, a 2-fold MIC increase was
observed for Veillonella and Rothia isolates, a 2- to
4-fold MIC increase for Actinomyces isolates, and a 2-
to 8-fold MIC increase for Streptococcus isolates. Only
mutants showing an 8-fold MIC increase were used for
further research. Among them there were mutants re-
sistant to erythromycin and tetracycline, intermediate
resistant to penicillin G and ampicillin, and interme-
diate or resistant to cefuroxime and amoxicillin/clavu-
lanic acid. These isolates were further examined for the
presence of antibiotic resistance genes. The antibiotic
resistance genes as MefI and tetM were detected, which
correlated with their phenotypic resistance to erythro-
mycin and tetracycline, respectively. In addition, patA
and patB genes were found, which are associated with
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resistance to the fluoroquinolone - moxifloxacin; how-
ever, the obtained mutants did not show resistance to
this antibiotic. The presence of two genes encoding
proteins involved in the transposition of the Tn916
transposon was also detected, namely int-II, responsi-
ble for the production of integrase, and xis-II, respon-
sible for the production of excisionase. In addition,
these strains showed an increased capacity for biofilm
formation (Auer et al. 2022).

Frith et al. (2022) using the gradient method, ex-
amined the effect of repeated exposure to subinhibito-
ry levels of chlorhexidine digluconate on supragingival
plaque samples from six healthy volunteers. After 10
sequential passages in CXG, each time selecting the
highest concentration still supporting growth, Strepto-
coccus oralis and Granulicatella adiacens were isolated
from the biofilm of these samples. Furthermore, G.
adiacens exhibited a 4-fold CXG MIC increase and a
2-fold CXG MBC increase, whereas S. oralis showed
a 2-fold MIC increase and a 4-fold MBC increase. The
antibiotic susceptibility of these mutants was then as-
sessed, revealing that S. oralis showed decreased sus-
ceptibility to erythromycin and increased MIC for
clindamycin, amoxicillin, and ampicillin. On the oth-
er hand, G. adiacens showed reduced susceptibility to
erythromycin and clindamycin, as well as increased
MICs for penicillin G, tetracycline, cefuroxime, and
ciprofloxacin. The study also showed that exposure to
CXG for 10 days had no significant effect on the ability
of S. oralis isolates to form biofilm, while in G. adiacens
it led to increased biofilm formation.

Spettel et al. (2025) performed an in vitro study on
the effects of long-term exposure of three biocides,
CHZX, OCT and triclosan, on 96 isolates of C. albicans
and Nakaseomyces glabratus (formerly Candida gla-
brata) using the high-throughput modified increment
method. These strains were exposed to increasing con-
centrations of each biocide for 60 days. No C. albicans
strain showed changes in sensitivity to CHX, OCT and
triclosan after long-term biocide exposure. However,
for several N. galbratus strains, mutants with reduced
sensitivity to CHX (4-fold increase in MIC values) and
triclosan (from 4- to 16-fold increase in MIC values)
were generated. Furthermore, long-term exposure
to CHX, OCT, or triclosan did not induce antiseptic
cross-resistance. On the other hand, after prolonged
exposure to CHX and triclosan, N. glabratus mutants
developed resistance to following azoles: fluconazole,
posaconazole, voriconazole, itraconazole and isavuco-
nazole, with a 4- to 512-fold increase in MIC values.
Whole-genome sequencing of the azole-resistant N.
glabratus mutants genomes revealed potential gain-of-
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function mutations in the transcription factor PDR1,
which is responsible for the control of efflux pump
genes expression, including Cdrlp, Cdr2p, and Sngq2p
genes. These mutations identified at positions D261Y,
C469R, 1936S, G943A, D1082G, and G1088E. Over-
expression of the genes encoding these efflux pumps,
Cdr1/2p and Snq2p, has previously been implicated
as one of the mechanisms responsible for azole resis-
tance. Furthermore, Spettel et al. (2025) demonstrated
overexpression of the CDRI efflux pump gene in these
mutants. In other seven azole-resistant N. glabratus
mutants that did not have changes in PDR1, mutations
in the PMA1 gene were demonstrated. It is known that
PMAL plays a role of a major regulator of intracellu-
lar pH in fungi. The detected mutations may therefore
lead to the loss of PDRI functionality and, further, to
a reduction in the intracellular cytosolic pH, which
may result in a decrease in the fungal susceptibility to
azoles. However, 4 of the 7 PDR1-mutants also showed
overexpression of the efflux pump CDRI gene.

2.2. Exposure to octenidine and changes in suscepti-
bility profiles

Despite the studies undertaken on the exposure
of bacterial and fungal strains to octenidine, only in a
few cases mutants with reduced sensitivity to this an-
tiseptic or showing cross-resistance to antibiotics were
generated.

Garratt et al. (2021) examined how long-term ex-
posure to OCT affects the sensitivity and development
of resistance in Gram-negative bacteria present in
the waste trap of a hospital sink. During the experi-
ment, water samples were collected from the trap suc-
cessively at time points TO0, T28, T62, T97, and T118
days. After 28 days of exposure to OCT, an increase in
tolerance was observed in P. aeruginosa (the MIC and
MBC values increased from 4 pg/ml to > 64 pg/ml). In
Citrobacter spp. isolates, a constant 2-fold increase in
the MIC and MBC values was observed at subsequent
time points starting at T62. Enterobacter spp. exhibited
cross-resistance to ciprofloxacin, chloramphenicol and
ceftazidime, while Citrobacter spp. were cross-resistant
to ampicillin, piperacillin, ceftazidime, ciprofloxacin,
chloramphenicol and meropenem. Additionally, it was
examined whether these strains developed tolerance to
cetylpyridinium chloride, hexadecylpyridinium chlo-
ride monohydrate, benzalkonium chloride, cetyltrime-
thylammonium bromide, triclosan, chlorhexidine
digluconate, and cetrimide. The results showed that En-
terobacter spp. became more tolerant to all tested bio-
cides except benzalkonium chloride. Citrobacter spp.
showed increased resistance to most tested biocides,

while P, aeruginosa developed the greatest resistance to
chlorhexidine. It was also analyzed whether exposure
to octenidine influenced the growth rate. A reduction
in growth was observed in Citrobacter strains isolated
at later time points, while the growth rate of P. aerugi-
nosa and Enterobacter spp. remained unchanged. Viru-
lence testing in the Galleria mellonella model revealed
a loss of virulence in Citrobacter spp., which was not
observed in Enterobacter spp. and P. aeruginosa (Gar-
ratt et al. 2021). Table III lists and characterizes the mi-
crobial mutants obtained after exposure to octenidine.

Shepherd et al. (2018) assessed the effectiveness
and implications of OCT exposure of P. aeruginosa
strains in both laboratory and hospital settings. The
first study group contained P. aeruginosa strains isolat-
ed from clinical materials of hospital patients. Adapta-
tion of strains to increasing OCT concentrations was
performed in laboratory conditions by the increment
method, transferring the obtained cultures to new
media with 2-fold higher OCT concentrations every
two days for 2 weeks. The second group contained P
aeruginosa isolated from a hospital drain trap, exposed
to 0.3% OCT bodywash solution four times a day for
three months. Water samples for isolation of bacteria
were taken from the drain trap at regular intervals.
Only one of the first group of clinical strains exposed
to OCT exhibited significant changes in antibiotic re-
sistance: a 4-fold increase in gentamicin MIC (up to
32 ug/ml), a 2-fold increase for amikacin (up to 32 ug/
ml), a 2-fold increase for tobramycin (up to 8 ug/ml),
and a 4-fold increase for colistin (up to 4 pg/ml). This
strain also showed an 8-fold increase in OCT MIC and
increased tolerance to CHX. In a simulated hospital
environment using an automated sink and drain sys-
tem, an 8-fold increase in OCT MIC (from 4 pg/ml to
32 pg/ml) for the second group of P. aeruginosa isolates
was recorded. However, after 10 days without biocide
bodywash exposure, the OCT MIC values decreased
and then returned to 32 pg/ml after 5 days of re-expo-
sure (Shepherd et al. 2018).

On the other hand, Spettel et al. (2025) did not ob-
tain fungal mutants with altered sensitivity to OCT
when they exposed 96 strains of C. albicans and N.
glabratus to this antiseptic for 60 days. Also, none of
the strains changed the level of sensitivity to the tested
azoles.

2.3. Exposure to alcohol / PVP-I and changes in sus-
ceptibility profiles

Shepherd and Parker (2023) investigated how re-
peated exposure to an antibacterial liquid handwash
containing ethyl alcohol (Lifebuoy) can affect bacterial
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resistance to antimicrobials and potential cross-resis-
tance to antibiotics. The test was conducted accord-
ing with EN 1276. Exposure steps were performed
repeatedly, reflecting consumer handwash use, over a
4-5 day period. The tested strains included S. aureus
ATCC 6538, S. epidermidis ATCC 14990, E. coli ATCC
10536, E. hirae ATCC 10541 and P. aeruginosa ATCC
15442. It was shown that, even at a 1/100 dilution and
a brief handwashing contact time of 10 seconds, the
tested strains were unable to survive eight repeat-ex-
posures. In general, repeated exposure to liquid soap
did not cause significant changes in antibiotic suscep-
tibility (Table IIT).

Barakat et al. (2022) studied long-term exposure to
two commercially available biocidal preparations on
the potential development of antiseptic and antibiot-
ic resistance in S. aureus ATCC 25923. The first prod-
uct contained 10% w/v PVP-I and the second named
PBM was a mix containing 45% w/w 1-propanol, 30%
w/w 2-propanol, and 0.2% w/w mecetronium ethyl
sulphate. The exposures were performed using incre-
ment method. After 10 passages, only a 2-fold increase
in PVP-I MIC was noted (from 5,000 pg/ml to 10,000
pg/ml), which decreased to 5,000 pg/ml after another
five passages in medium without antiseptic. When the
strain was exposed to PBM, a obtained mutant showed
a 128-fold increase in PBM MIC (from 664 pg/ml to
85,000 pg/ml) and was still stable after five subsequent
passages in medium without biocide. This mutant ac-
quired cross-resistance to cefoxitin, penicillin, cipro-
floxacin, and intermediate-level resistance to clinda-
mycin (Table III). Furthermore, the vancomycin MIC
value of the PBM-resistant mutant increased 4-fold but
the mutant still remained sensitive to this antibiotic.

In additionally, Barakat et al. (2022) the effects of
short-term exposure to subinhibitory concentrations
(1/4 and 1/2 MIC) of two commercially available bio-
cidal preparations on the potential development of
virulence in both S. aureus ATCC 25923 and PBM-re-
sistant mutant was investigated. Subinhibitory con-
centrations of PVP-I (1/4 and 1/2 MIC) significantly
reduced hemolysin activity (by 7% and 0.28%, respec-
tively) and completely inhibited biofilm formation
only in the case of S. aureus ATCC 25923. In contrast,
subinhibitory concentrations of PBM led to a non-sig-
nificant decrease in hemolysin activity and a moderate
reduction in biofilm activity in both strains. Moreover,
the 1/2 PVP-I MIC value significantly downregulated
in S. aureus ATCC 25923 the expression of hla gene
responsible for alpha-hemolysin activity, and the fol-
lowing biofilm formulation genes: ebps, eno, fib, icaA,
and icaD.
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3. Conclusion

Research has shown that long-term exposing mi-
croorganisms to subinhibitory concentrations of anti-
septics can reduce their susceptibility to these biocides
and, in some cases, lead to the development of cross-re-
sistance to antibiotics. Among the four most common-
ly used antiseptics (chlorhexidine, octenidine, ethyl
alcohol, and povidone-iodine), chlorhexidine has been
the most extensively studied and has demonstrated the
most significant changes in microbial susceptibility
after exposure. Antiseptic products remain generally
effective since the concentrations of biocidal substanc-
es they contain are at least 100 times higher than the
MIC values for most microorganisms. Although their
misuse (e.g., inappropriate concentrations, unsuitable
surfaces, against inappropriate bioburden, or targeting
microorganisms outside the agent’s spectrum) poses a
serious concern. Improper use can contribute to shifts
in microbial drug susceptibility, potentially may lead-
ing to clinically relevant consequences. These findings
highlight the need to broaden research of antiseptic
effectiveness to a wider range of bacterial and fungal
species, as well as inclusion of MDR strains with spe-
cific drug resistance mechanisms. This applies to both
scientific research and research according to the EN
standards. Only a detailed understanding of the mo-
lecular mechanisms driving altered susceptibility to
antiseptics will support the development of effective
strategies that minimize the risk of resistance emer-
gence. Responsible use of antiseptics is therefore essen-
tial. They should be employed only when clearly bene-
ficial, and overuse must be avoided. Education efforts
targeting both the public and healthcare professionals
should emphasize the importance of proper disposal of
unused or expired antiseptics and their residues.

It is also important to note that biocides are exten-
sively used in agriculture, where they are sprayed in the
environment and on vehicles to help limit the spread
of infections to animals. In such settings, maintaining
sufficiently high biocide concentrations is crucial for
preserving their efficacy and minimizing the develop-
ment of resistance. In line with the One Health concept
- which emphasizes the interconnectedness of human,
animal, and environmental health - it is vital to imple-
ment stricter control over the use of biocides not only
in healthcare settings, but also in veterinary and live-
stock environments. Compliance with current guide-
lines in all these areas is crucial for effective prevention
and controlling the spread of infectious diseases and
antimicrobial resistance.
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Akkermansia muciniphila is a gut bacterium that has recently attracted considerable attention in microbiota research. Its presence in the
gut is associated with improved metabolic health, enhanced gut barrier integrity, and modulation of the immune system. However, poten-
tial risks related to its abundance under certain pathological conditions have also been noted. As A. muciniphila emerges as a candidate for
next-generation probiotics, evaluating whether current data support its therapeutic use is crucial. In this review, we analyze the available
literature to outline the beneficial effects of A. muciniphila on the host and critically assess its potential as a probiotic.

1. Introduction. 2. Akkermansia muciniphila in the human population. 3. Akkermansia muciniphila is a mucin specialist. 4. The protective
role of Akkermansia muciniphila in diseases. 5. The role of Akkermansia muciniphila in obesity prevention. 6. Akkermansia muciniphila -

potential as a probiotic. 7. Conclusion.

Keywords: Akkermansia muciniphila, disease, microbiota, probiotics.

1. Introduction

Akkermansia muciniphila was first isolated from
the faeces of a healthy adult Caucasian female in 2004
as the first known member of the Akkermansia genus
and the only isolated member of the Verrucomicro-
biota phylum (Derrien et al. 2004). The anaerobic,
Gram-negative, non-motile, and non-spore-forming
bacterium colonizes the intestines and nasopharynx
of humans and other animals (Derrien et al. 2004).
Other environments it inhabits include the appen-
dix, the pancreas (in pathological conditions), human
breast milk, and human blood samples (Geerlings et
al. 2017). Since then, other members of the genus have
been found inhabiting the human gut (Kobayashi et
al. 2018). Akkermansia is a genus that has recently at-
tracted much attention due to its probiotic effects and
possible role in bowel disease treatment (approved by
the European Food Safety Authority (EFSA).

2. Akkermansia muciniphila in the human population

A. muciniphila is an early colonizer of the human
gut that reaches an abundance similar to or slightly
lower than that in adults within the first year of life
and then decreases in the elderly. The abundance ap-
pears to be higher in formula-fed than in breast-fed
infants, and increases once breast-feeding stops (Azad
etal. 2018). A Chinese study found a colonization rate
of 51-74% in southern China and identified 22 strains
within the studied population (Guo et al. 2016). Abun-
dance and colonization rate can vary between coun-
tries, and the composition of the microbiota is influ-
enced by diet and genetic factors (Grzeskowiak et al.
2012). Nonetheless, the consensus is that A. munici-
phila is a common and stable part of the human gut
microbiota. A. municiphila growth can be stimulated
by diet, with one study demonstrating that dietary
polyphenols from grapes can dramatically promote
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its growth in mouse models (Roopchand et al. 2015).
Another study demonstrated that fucoids from brown
seaweed increased the abundance of Akkermansia in
mice with metabolic syndrome induced by a high-fat
diet (Qingsen et al. 2017).

3. Akkermansia muciniphila is a mucin specialist

One of the key characteristics of A.muciniphila is
the ability to degrade mucins and use them as an en-
ergy source. Mucins are high-molecular-weight glyco-
proteins continuously secreted by goblet cells, which
constitute a significant component of the intestinal
mucus and form the protective mucus layer. Of the 21
different mucins identified, mucin 2 (MUC2) is the
predominant component of the colonic mucus layer
and acts as its structural skeleton (Song et al. 2023). The
mucus layer serves as the first line of defense, protect-
ing the epithelium from inflammation and infection.
Disruption of the mucus layer is an important factor
in the development of intestinal diseases, including in-
flammatory bowel disease (IBD) and colorectal cancer.
The mucus barrier maintains homeostasis by stimulat-
ing the growth of appropriate microbiota and prevent-
ing pathogens from contacting the epithelium (Song
et al. 2023).
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Mucin-degrading bacteria produce glycosyl hydro-
lases (GHs), specialized enzymes that enable them to
break down mucins. The A. muciniphila genome con-
tains genes encoding nine different GH families (Glov-
er et al. 2022). It can utilize different combinations to
hydrolyze up to 85% of mucin structures, allowing it
to use mucins as its sole carbon source (Glover et al.
2022). As a result, A. muciniphila is often considered
one of the most important mucin degraders in the hu-
man microbiota. The metabolism of mucins by A. mu-
ciniphila, in addition to the action of other bacterial
species, releases monosaccharides, oligosaccharides,
and short-chain fatty acids into the intestinal environ-
ment, thereby contributing to the modulation of intes-
tinal homeostasis (Belzer et al. 2012). Although A. mu-
ciniphila degrades mucin, it does so in a controlled and
selective manner, which (1) stimulates the production
of new, healthy mucus, (2) supports the regeneration
of the mucus and epithelial barrier, and (3) reduces in-
flammation and strengthens mucosal immunity (Si et
al. 2022). As such, its presence in the gut microbiota is
associated with better metabolic, immune, and barrier
health (Table 1).

Table 1. Akkermansia muciniphila is positively associated with improved metabolic profiles,

enhanced mucosal immunity, and a robust epithelial barrier.

Mechanism

Effect Reference

Mucin degradation + mucus stimulation
ness

Promotes goblet cell proliferation and maintains mucus thick-

Sietal. (2022)

Barrier reinforcement

Enhances tight junctions (ZO1, occludin, claudins), and TER 1

Immune modulation

| proinflammatory cytokines, 1 IL-10, and 1 Tregs

IL-10 - interleukin-10; TER - transepithelial electrical resistance; Tregs — regulatory T cells; ZO-1 - zonula occludin-1.

4. The protective role of Akkermansia muciniphila in
diseases

The primary reported benefits of A. muciniphila
are associated with alleviating symptoms or preventing
gastrointestinal disease, with a primary focus on In-
flammatory Bowel Disease IBD. IBD refers to a group

of diseases that cause inflammation of the bowel, with
the primary types being ulcerative colitis (UC) and
Crohns disease (CD). Symptoms may include diar-
rhea, abdominal pain, fatigue, nausea, and weight loss.
Significant evidence suggests a correlation between A.
muciniphila and the development of IBD, although its
nature remains under discussion. In a mouse study,
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treatment with A. muciniphila for five weeks reduced
inflammation caused by chemically induced colitis
(Yilmaz et al. 2024). Another mouse model found that
A. muciniphila improved clinical parameters, includ-
ing spleen weight, colon inflammation index, colon
histological score, and regulation of pro-inflammatory
cytokines, with varying activity levels among strains
(Zhai et al. 2019). In addition, A. muciniphila supple-
mentation reduced serum and tissue inflammatory
cytokines and chemokines in mice, along with re-
duced weight loss, improved histological scores, and
enhanced barrier function (Bian et al. 2019).

The role of A. muciniphila in the prevention of IBD
can be inferred from its reduced presence in IBD pa-
tients, with UC and CD exhibiting lower colonization
rates and abundance compared to healthy individuals,
both of which increase significantly after washed mi-
crobiota transplantation (Qu et al. 2021). Addition-
ally, A. muciniphila was lower in patients with active
UC compared to those with quiescent UC and healthy
individuals (Zhang et al. 2020). The same study iden-
tified a reduction of sulfated mucins in the mucus of
IBD patients as a potential cause of A. muciniphila re-
duction (Zhang et al. 2020).

Investigations into the mechanisms underlying the
anti-inflammatory effects of A. muciniphila are ongo-
ing. Aside from the well-known anti-inflammatory
effects of short-chain fatty acids (SCFA) produced by
the human microbiota, there have been reports that
one of the main surface proteins of A. muciniphila
(Amuc_1100) could play a crucial role (Wu et al. 2019).

The anti-inflammatory effect of A. muciniphila
might also be beneficial for patients with Parkinson’s
disease (PD). Indeed, an A. muciniphila treatment
alleviated artificially induced PD in mice, including
neuroinflammation and motor dysfunction, while
promoting neurogenesis (Qiao et al. 2024). However,
the evidence for the beneficial effects of A. muciniphila
remains inconclusive, with some reports not aligning
with the previously mentioned results. One such study
detected an increase in A. muciniphila in patients with
colorectal cancer (Weir et al. 2013), suggesting that the
relationship between A. muciniphila and host health
might be more complex.

5. The role of Akkermansia muciniphila in obesity
prevention

Another area in which A. muciniphila is heavily in-
vestigated for its beneficial effects is obesity, with the
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bacterium’s anti-obesity effects demonstrated in sev-
eral studies. An analysis of data from the American
Gut Project has found an association between a higher
abundance of A. muciniphila and a lower risk of obe-
sity (Zhou et al. 2020). A randomized controlled trial
reported that A. muciniphila supplementation reduced
obesity, though the effects appear to be limited to in-
dividuals with a low baseline abundance of the bacte-
rium (Zhang et al. 2025). In this regard, the reduction
of A. muciniphila was associated with the development
of atherosclerosis induced by a high-fat Western diet
in apolipoprotein E knock-out mice (Li et al. 2016).
Meanwhile, daily administration of A. muciniphila
has been shown to prevent weight gain, hyperphagia,
and dysglycemia caused by the dietary emulsifiers
carboxymethylcellulose and polysorbate (Daniel et al.
2023).

Investigations into the anti-obesity mechanisms of
A. muciniphila demonstrated that the species can alle-
viate the negative effects of interferon gamma (IFNy)
on glucose tolerance (Greer et al. 2016). Another po-
tential mechanism of action involves Amuc_1100,
which has some of the same effects as the live bacteri-
um when purified or applied as part of pasteurized A.
muciniphila (Anhé et al. 2017). It is very likely that the
effects of A. muciniphila on obesity are not centred on
a single mechanism, but result from several separate
effects in conjunction with other members of the hu-
man gut microbiota. Furthermore, many studies have
involved mice fed a high-fat diet, so the impact on dif-
ferent sources of obesity should still be investigated.

6. Akkermansia muciniphila - potential as a probiotic

As described previously, A. muciniphila has sever-
al potential benefits for human health. However, it is
worth discussing whether it can be used as a probiotic.
Aside from providing health benefits to the host, a good
probiotic should be considered safe for human con-
sumption, and it should be able to survive long enough
in storage and after consumption to reach the gut. A
toxicological analysis of pasteurized A. muciniphila did
not reveal any mutagenic, clastogenic, or aneugenic ef-
fects, nor did it reveal any adverse neurobehavioural
or pathological effects that would undermine its use
as a food additive (Druart et al. 2021). A comparative
analysis of A. muciniphila and the commonly used pro-
biotic bacterium Lactobacillus rhamnosus GG revealed
comparable levels of auto-aggregation, co-aggregation,
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hydrophobicity, and antimicrobial activity, but a high-
er level of antibiotic resistance in A. muciniphila. It is
generally recommended that probiotic bacteria have a
low level of antibiotic resistance to prevent potential
horizontal gene transfer. However, the presence of re-
sistance genes associated with transferable genetic ele-
ments has not been reported in A. muciniphila (Coz-
zolino et al. 2020).

Methods for cultivating A. muciniphila have im-
proved since its initial discovery. Using mucin in
growth medium is costly and inconvenient, so the use
of alternatives has been investigated. One study identi-
fied glucose or N-acetylglucosamine (a component of
mucins) as a good source of carbon, and tryptone as a
reliable source of nitrogen (Wu et al. 2024). Another
study identified galactose, sialic acid, lactose, and chi-
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tosan as factors significantly promoting A. muciniphila
growth (Meng et al. 2024).

7. Conclusions

A. muciniphila supplementation provides signif-
icant benefits for patients suffering from IBD. Its re-
lationship with obesity seems to be more complex,
though studies agree that it alleviates symptoms associ-
ated with a high-fat diet, which is common in Western
countries. As a natural member of the human microbi-
ota, A. muciniphila is generally considered safe, which
is supported by evidence, and has been approved by
EFSA. There are also no technical obstacles to its use as
a commercial probiotic. A. muciniphila’s general func-
tions are summarised in Figure 1.

Natural environments:
nosopharynx, human milk, intestinal

Pathogen elimination,
Intestinal homeostasis,
Protective role in disease,
e.g. IBD,

Prevents inflammation
Mucin fermentation - short
chain fatty acid release
Obesity - weight loss

Insulin sensitivity increase Decrease of cholesterol
Stimulate goblet cells
»
Akkermansia muciniphila ,-‘
8 and common function i

v

Probiotic

-

Figurel. Summary of the role of A.muciniphila in health and disease. Illustration created using Biorender
(www.biorender.com). Agreement number: CA28PV7H2E
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Abstract: Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder with an increasing global prevalence. The International
Classification of Diseases (ICD) system typically categorizes IBS into four subtypes based on symptomatology. The objective of this review
is to provide a concise synthesis of the most current information regarding IBS, encompassing widely accepted diagnostic criteria, etiology,
epidemiological data and the significance of gut microbiota (GM) in pathogenesis of this disorder. Additionally, it will explore future per-
spectives. Recent studies have demonstrated that the GM in healthy individuals primarily consists of four main bacterial phyla: Firmicutes
spp., Bacteroidetes spp., Actinobacteria spp., and Proteobacteria spp. Dysbiosis or an imbalance in these bacteria may be a contributing
factor to the IBS development. It is imperative to acknowledge the multifaceted role of the GM in several essential biological processes,
including: immunomodulation, intestinal barrier integrity, gut microbiota-gut-brain axis (GBA) or nutrient absorption. The composition
of GM is subject to variation depending on the IBS subtype. Many therapeutic strategies have been devised for the treatment of patients
with IBS, comprising antibiotics, probiotics, prebiotics, synbiotics and fecal microbiota transplantation (FMT). Although FMT has shown
promise, clinical trials outcomes remain still inconsistent. Dietary interventions and psychological support are also vital components of
IBS management.

Despite the advances in understanding the GM-IBS relationship, there is still a lack of knowledge regarding specific microbial markers
for each IBS subtype. Consequently, a definitive microbiota pattern has yet to be delineated. However, emerging evidence underscores the
microbiome’s role in IBS pathophysiology.

1. Introduction. 2. Gut microbiota. 3. Epidemiology of IBS. 4.The role of gut microbiota in the pathogenesis of irritable bowel syndrome.
4.1. Gut microbiota metabolic products. 4.2. Mucosal immune regulation. 4.3. Intestinal barrier dysfunction. 4.4. Gut microbiota-gut-brain
axis. 5. Changes in the gut microbiota composition in dependence on subtype of irritable bowel syndrome. 6. Therapeutic approach in irri-
table bowel syndrome. 6.1. Diet. 6.2. Antibiotics. 6.3. Probiotics, prebiotics, synbiotics, postbiotics. 6.4. Fecal microbiota transplantation.
6.5. Mind-body therapies. 7. Limitations of current therapies. 8. Future perspectives. 9. Conclusions.

Keywords: gut microbiota/microbiome, IBS, irritable bowel syndrome

1.Introduction

Irritable bowel syndrome is one of the most com-
mon functional, gastrointestinal disorder (FGID)
characterized by occurrence of following symptoms:
bloating, discomfort, abdominal pain, abnormal stool
characteristics, changes in bowel habits (constipation
or diarrhea). Also symptoms not associated with di-

gestive system were reported including: chronic pelvic
pain, temporomandibular joint disorder, fibromyalgia
and chronic fatigue syndrome (Cheng et al. 2024; Agge-
letopoulou and Triantos 2024; Li et al. 2024). As it was
mentioned above, IBS is classified as FGID what means
that symptoms (particularly gastrointestinal) cannot
be described in the context of structural or metabolic
abnormalities (Shaikh et al. 2023). This disorder might
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be divided into four subtypes: constipation-predomi-
nant (IBS-C), diarrhea-predominant (IBS-D), mixed
(IBS-M), and unsubtyped (IBS-U) according to the
Rome IV 2016 (Palsson et al. 2016). Also Bristol Stool
Form Scale (BSFS) plays a role in the determination
of IBS subtype. This scale assumes characterization of
stool consistency from hard to soft based on the scale
1-7 (Shaikh et al. 2023). IBS affects approximately 10-
20% population and negatively impacts on the patient’s
life quality including psychological issues (Pittayanon
et al. 2019). It was reported that among patients with
this disorder occurred such mental health problems
as for example anxiety, depression, suicidal thoughts
or work productivity impairment. Moreover, patient
with IBS annualy often spend much money on medical
care (Aggeletopoulou and Triantos 2024; Chong et al.
2019). Currently, there are no diagnostics criteria and
IBS is diagnosed based on mainly patient’s symptoms,
medical history and by using imaging methods rou-
tinely used in gastroenterological practice like endos-
copy (Cheng et al. 2024). There are also no biomarkers
or specific laboratory tests which could be helpful in
the diagnosis and management of this gastrointestinal
disease (Shrestha et al. 2022). It highlights that IBS is
a challenge in the clinical practice. The pathophysiol-
ogy of IBS is intricate and not yet fully elucidated. It
is widely accepted that this phenomenon arises from
disruptions in the complex interactions between the
gastrointestinal system and the central nervous system.
These disturbances have been hypothesised to result in
visceral hypersensitivity, intestinal motility disorders
and abnormal signal processing in the central nervous
system. The predominant pathophysiological mech-
anisms of IBS are (a) microbiological or functional
disorders of the brain-gut axis, resulting from bacte-
rial overgrowth or disrupted communication, which
affects the functioning of the gastrointestinal tract; and
(b) altered gastrointestinal motility disorders (abnor-
mal contractions leading to diarrhoea, constipation or
alternating periods of both); (c) visceral hypersensi-
tivity associated with pain and discomfort, even in the
absence of peristaltic movement; (d) disorders in the
intestinal immune system (intestinal inflammation),
including excessive immune stimulation or hyper-
sensitivity to food allergens; (e) intestinal dysbiosis,
i.e. an imbalance of intestinal microorganisms, both
qualitative and quantitative; (f) psychological factors,
including prolonged or acute stress, other psycholog-
ical disorders (low mood, anxiety symptoms, depres-
sion, grief), as well as adverse childhood experiences

(ACE), which may exacerbate the symptoms of irrita-
ble bowel syndrome (IBS); (g) genetic predisposition;
(h) previous intestinal infections resulting in perma-
nent alterations in the functioning of the gastrointes-
tinal tract (post-infectious reactivity); (i) a diet that
is particularly rich in Fermentable Oligosaccharides,
Disaccharides, Monosaccharides, And Polyols (FOD-
MAPs) can trigger symptoms in individuals diagnosed
with IBS (Cheng et al. 2024; Li et al. 2024; Almonajjed
et al. 2025).

A significant number of authors have considered
also the psychosomatic basis of IBS. The manifest
symptoms of the digestive system are not necessarily
directly related to the pathology of this system itself or
the physiological changes that occur in the intestines. It
is frequently cited that adverse childhood experiences
(ACEs) resulting from severe traumatic events during
childhood or adolescence, experiences of extreme pov-
erty, illness in close family members, or war are often
mentioned in this context. It is acknowledged that ear-
ly childhood trauma has the capacity to influence the
development of IBS through two primary neurobio-
logical mechanisms. Firstly, there is the dysregulation
of the hypothalamic-pituitary-adrenal axis, which can
lead to dysregulation of intestinal motility and intesti-
nal dysbiosis. Secondly, there is the disturbance of the
brain-gut axis, which can result in, for example, mis-
processing of information from the intestines, hyper-
sensitivity and a low pain threshold. The combination
of all functional gastrointestinal symptoms of IBS with
stress (via neural, hormonal and immune signalling)
has been shown to cause further exacerbation of gas-
trointestinal symptoms, resulting in positive feedback
(Almonajjed et al. 2025; Chong et al. 2019; Staudacher
et al. 2023).

The purpose of this concise review is to explore
the underlying causes of discomfort and the associat-
ed symptoms that contribute to the development and
perpetuation of this multifaceted disorder. The pri-
mary objective of the present review is to emphasise
the significance of the GM in the etiopathogenesis and
progression of IBS.

2. Gut microbiota

The intestinal microbiota/microbiome compris-
es bacteria, viruses, protozoa and fungi, all of which
play a vital role in maintaining the health of the host.
These microorganisms play a pivotal role in a multi-
tude of functions that are indispensable for the proper



LINKING GUT MICROBIOTA AND IRRITABLE BOWEL SYNDROME (IBS): A REVIEW

functioning of the human organism. Such functions
include drug and nutrient metabolism, protection
against pathogens and modulation of the immune
response (Aggeletopoulou and Triantos 2024; Shaikh
et al. 2023). The composition of the intestinal micro-
biota is influenced by several environmental factors,
including age, sex, ethnicity and diet or geographical
localisation (Shaikh et al. 2023). The preponderance
of bacteria in the intestinal ecosystem has led to the
nomenclature of this complex as GM (Cheng et al.
2024).The development of GM has been observed
since early childhood (Almonajjed et al. 2025). In the
context of healthy individuals, the predominant phyla
include Bacteroides spp., Clostridium spp., Bifidobac-
terium spp. and Lactobacillus spp. (Cheng et al. 2024;
Almonajjed et al. 2025; Shaikh et al. 2023; Menees and
Chey 2018). It is widely accepted that bacteria present
in the intestines can be categorised into two distinct
groups: namely, beneficial bacteria and pathogenic
bacteria. The former are primarily represented by the
phyla mentioned above: Bacteroides spp., Clostridium
spp.» Bifidobacterium spp. and Lactobacillus spp. It is
now evident that these bacteria are involved in facil-
itating a multitude of beneficial processes within the
human organism, including the synthesis of vitamins
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(e.g.K,,B,B,, B, B, B,,and B,,) and the production of
(SCFAs, e.g. acetate, butyrate, and propioniate), amino
acids, carbohydrates, and lipids, the absorption of im-
portant ions (e.g. magnesium, iron, and zinc), the bio-
synthesis of cholesterol from bile acids (BAs), and the
protection against different pathogens by the produc-
tion of antimicrobial substances (e.g. bacteriocins and
lactic acid) (Table 1). The second group of GM com-
prises opportunistic bacteria with pathogenic poten-
tial, including enteric bacteria such as Salmonella spp.
and Escherichia coli. These bacteria are responsible for
the production of harmful substances that can lead to
various pathological conditions. Furthermore, oppor-
tunistic bacteria, including Enterococcus spp. and En-
terobacterales, have been identified as significant con-
tributors to diseases, particularly in individuals with
compromised immune systems (Cheng et al. 2024).
The composition of the gut microbiome can be studied
using a variety of molecular methods, including ter-
minal restriction fragment length polymorphism, 16S
ribosomal RNA (rRNA) gene sequencing, quantitative
polymerase chain reaction (qPCR), fluorescent in-situ
hybridization, bacterial culture or microarrays (Pit-

tayanon et al. 2019).

Table 1: Examples of gut microbiota phyla and taxa, along with an analysis of their role in the functioning of the human organism based
on (Almonajjed et al. 2025; Mamieva et al. 2022)

Roseburia, Eubacterium

Phylum Taxa Role
metabolism of amino acids, carbohydrates and lipids, the
Enterococcus, Ruminococcus, Clostrid- | transformation of BAs and the biosynthesis of cholesterol,
Firmicutes ium, Lactobacillus, Faecalibacterium, | the synthesis of vitamins (KZ, B,B,B,B,B, and Blz) sup-

port the integrity of the intestinal epithelial barrier and pro-
tection against enteric infections

Bacteroidetes Bacteroides, Prevotella

immunomodulation, appetite regulation

Actinobacteria

Bifidobacterium, Corynebacterium

vitamin synthesis, BAs metabolism, protection against infec-
tions

Proteobacteria

Shigella, Escherichia, Desulfovibrio

amino-acids metabolism

3. Epidemiology of IBS

The global prevalence of IBS varies depending on
the diagnostic criteria used and the geographical loca-
tion. Based on Rome IV criteria, the global prevalence
of IBS is estimated at 3.8%. The highest prevalence is

found in South America (21%), while the lowest in
Southeast Asia (7%) (Oka et al. 2020). IBS is more prev-
alent among women than men, with an approximate
female-to-male ratio of about 2:1 in Western countries
(Sperber et al. 2021; Lovell and Ford 2012). Women
more frequently report IBS-C, while men more often
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report IBS-D (Lovell and Ford 2012). Onset typically
occurs before age 50, often in late adolescence or early
adulthood (Canavan et al. 2014). IBS is more frequent-
ly reported in Western countries, although underdi-
agnosis in low- and middle-income countries due to
lack of access to healthcare and cultural differences in
symptom reporting may mean that the true prevalence
is underestimated (Oka et al. 2020; Sperber et al. 2021).
A higher prevalence is often observed in urban areas
and among individuals with a higher level of education
and a higher socioeconomic status, potentially due to
increased access to healthcare and health-seeking be-
haviour (Hungin et al. 2005).

4. The role of gut microbiota in the pathogenesis of
irritable bowel syndrome

The role of the GM in the development of IBS is
a subject that has attracted considerable interest from
the scientific community. This group of microorgan-
isms plays a number of pivotal roles in a variety of
processes, including the production of different me-
tabolites from absorbed nutrients in the intestines, the
regulation of GBA, mucosal immune regulation, intes-
tinal barrier dysfunction, gastrointestinal motility and
visceral sensitivity (Almonajjed et al. 2025; Mamieva et
al. 2022; Cheng et al. 2024).

4.1. Gut microbiota metabolic products

The development of IBS is significantly impacted
by GM, which produces various metabolic factors, in-
cluding SCFAs, neurotransmitters (e.g. serotonin), li-
popolysaccharides, peptidoglycans, BAs and signalling
molecules. These products are derived from nutrients
absorbed in the intestines and subsequently metabo-
lised by GM through a series of metabolic processes.
It is evident that all these factors collectively influence
the manifestation of IBS symptoms (Cheng et al. 2024).

Bile acids are synthesised in the human intestine
by a variety of bacterial phyla, including: Bacteroides,
Clostridium, Lactobacillus, Listeria, and Bifidobacteri-
um. It has been demonstrated that alterations in the
concentration of BAs have been demonstrated to in-
duce cytotoxic effects, encompassing apoptosis, necro-
sis and DNA damage. These alterations are considered
a primary contributing factor to the development of
IBS. An imbalance in the synthesis of BAs has been
particularly observed among patients with IBS-D, who
also exhibit decreased levels of bacteria belonging to

the Ruminococcaceae family (Aggeletopoulou and
Triantos 2024; Shrestha et al. 2022).

SCFAs, including butyrate and propionic acids,
are a by-product of the anaerobic metabolism of car-
bohydrates and play a pivotal role in maintaining in-
testinal barrier integrity and regulating immune func-
tions (Cheng et al. 2024; Aggeletopoulou and Triantos
2024). In addition to their role in metabolism, SCFAs
have also demonstrated the capacity to exhibit anti-in-
flammatory activity. Reduced levels of SCFAs have
been observed primarily among patients diagnosed
with IBS-C (Cheng et al. 2024). SCFAs play a crucial
role in the synthesis of serotonin, a neurotransmitter of
significant importance within the central nervous sys-
tem (CNS). Serotonin is synthesised from tryptophan
by enterochromaffin (EC) cells or directly by bacteria.
This neurotransmitter is responsible for gut peristalsis,
regulation of secretion and vasodilator function (Ag-
geletopoulou and Triantos 2024; Shaikh et al. 2023;
Mamieva et al. 2022). Increased serotonin synthesis
has been linked to diarrhea (IBS-D), while reduced se-
rotonin levels have been associated with IBS-C (Shaikh
et al. 2023; Mamieva et al. 2022). Additionally, SCFAs
have been identified as modulators of glucagon-like
peptide 1 (GLP-1) secretion by intestinal L-cells. The
bacteria representing Clostridium spp., Bacteroides
spp. and Ruminococcus spp. are the main contributors
to this process (Mamieva et al. 2022). The primary
function of GLP-1 is to reduce motility in the antrum,
duodenum and jejunum (Mamieva et al. 2022). Levels
of this factor are reduced in patients diagnosed with
IBS-C (Li et al. 2017). Furthermore, SCFAs have been
identified as promising biomarkers for IBS (Cheng et
al. 2024).

It is evident that components of the bacterial cell
wall, such as lipopolysaccharides (LPS) and peptido-
glycans (PGs), play a pivotal role in the activation of
the immune system through the recognition process
by Toll-like receptors (TLRs). Thereafter, immune cells
secrete various cytokines and mediators, which are
instrumental in the process of immune response. Of
particular significance is the secretion of histamine by
mast cells, a process that is implicated in the occur-
rence of gut permeability, mucosal inflammation and
visceral hypersensitivity, which are characteristic of
IBS symptoms (Cheng et al. 2024; Aggeletopoulou and
Triantos 2024).

In conclusion, it is evident that GM metabolic prod-
ucts play a pivotal role in the regulation of gastrointes-
tinal functions, immunomodulation, and the synthesis
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of factors necessary for the normal functioning of the
human organism. Conversely, there is also evidence to
suggest that metabolic products have also been associ-
ated with the symptoms and progression of IBS.

4.2. Mucosal immune regulation

The immune response in patients diagnosed with
IBS has been shown to be dysregulated. This has been
linked to the migration of immune cells, primari-
ly mast cells, to the intestinal mucosa, leading to the
onset of inflammation (Aggeletopoulou and Triantos
2024; Mamieva et al. 2022). In response to the recogni-
tion of bacterial antigens by TLRs, mast cells secrete a
range of immune response mediators, including hista-
mine, tryptamine, prostaglandins, serotonin and pro-
teases. The mediators in question have been identified
as playing a crucial role in immunotolerance (Cheng
et al. 2024; Aggeletopoulou and Triantos 2024). The
aforementioned mediators have been linked to the oc-
currence of IBS symptoms, visceral hypersensitivity,
altered pain threshold and intestinal barrier dysfunc-
tion (Aggeletopoulou and Triantos 2024; Almonajjed
et al. 2025; Mamieva et al. 2022). Furthermore, an ad-
ditional finding of significance is the observation that
tryptase release is a causative factor in the reduction of
expression of tight junction proteins, thereby increas-
ing gut permeability (Almonajjed et al. 2025; Mamieva
et al. 2022). A plethora of studies have identified el-
evated levels of various immune mediators, including
IL-6, IL-8, IL-12, IL-1P and tumour necrosis factor-a
(TNF-a), in patients with IBS. Conversely, a paucity
of research has been observed with regard to IL-10
levels, which have been shown to be reduced in such
cases (Aggeletopoulou and Triantos 2024; Mamieva et
al. 2022). The immune response is influenced by the
production of metabolites by several phyla. Bacteria
belonging to the phylum Firmicutes are responsible for
the production of butyrate, which is involved in the
differentiation of regulatory T-cells (Treg.) (Mamieva
et al. 2022). Lactobacillus spp. transform tryptophan
into indole-3-aldehyde, which leads to the activation of
the aryl hydrocarbon receptor (AHR). The AHR is in-
volved in the regulation of the number of intraepithe-
lial lymphocytes and IL-22 production (Almonajjed et
al. 2025; Mamieva et al. 2022). Furthermore, Lactoba-
cillus rhamnosus, Lactobacillus casei and Bifidobacteri-
um breve have been observed to induce IL-4 and IL-
10 production, while L. reuteri and L. plantarum have
been shown to downregulate the expression of TNF-a
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(Mamieva et al. 2022). Butyrate-producing Faecalibac-
terium prausnitzii is a bacterial species that has been
shown to be responsible for anti-inflammatory activity
through inhibition of IL-8 synthesis, activation of reg-
ulatory T-cells (Treg) and increased secretion of IL-10
(Almonajjed et al. 2025). In patients diagnosed with
post-infectious IBS (PI-IBS), an increased abundance
of Bacteroidetes and a concurrent decrease in Clostrid-
iales have been observed. These changes have been
shown to correlate with elevated levels of cytokines
(IL-1p and IL-6), which are involved in inflammatory
processes (Aggeletopoulou and Triantos 2024).

The scientific literature indicates that GM play a
crucial role in regulating immune responses, and that
they are involved in the pathophysiology of IBS, with a
consequent effect on the severity and symptoms of the
condition.

4.3. Intestinal barrier dysfunction

The intestinal barrier plays a pivotal role in pre-
serving gut homeostasis, a process that involves the
prevention of antigen migration to the mucosa and
the subsequent development of mucosal inflammation
(Mamieva et al. 2022).The intestinal barrier dysfunc-
tion is a multifaceted condition, with involvement of
both metabolic and immune pathways (Mamieva et al.
2022). A salient feature of intestinal barrier dysfunc-
tion is its high prevalence among patients diagnosed
with IBS-D (Almonajjed et al. 2025). The underlying
causes of this increased gut permeability are multifac-
eted, including, but not limited to, reduced expression
of tight junction proteins, such as occludin, claudins,
and zonula occludens-1, in the duodenum, colon, and
jejunum (Cheng et al. 2024; Mamieva et al. 2022; D’An-
tongiovanni et al. 2020). The role of GM in maintain-
ing intestinal integrity is significant, with bacteria from
the phylum Firmicutes (Eubacterium spp., Clostridium
spp., Ruminococcus spp. and Faecalibacterium spp.)
producing SCFAs. Recent studies have demonstrated
the pivotal function of these SCFAs in modulationg
the expression of claudins (3 and 4) and occludins (Al-
monajjed et al. 2025; Mamieva et al. 2022). The pro-
duction of E-cadherin and zonula occludens-1 is stim-
ulated by genera such as Clostridium spp., Enterococcus
spp., Streptococcus spp. and Lactobacillus spp., which
are involved in the production of polyamines (Almo-
najjed et al. 2025; Mamieva et al. 2022). Tight junction
protein ZO-2 plays a crucial role in maintaining the
intestinal barrier function, with its expression being
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stimulated by bacteria E. coli (Cheng et al. 2024). Pro-
biotic bacteria, typified by Lactobacillus spp. and Bi-
fidobacterium spp., have been demonstrated to excert
a beneficial influence on the intestinal barrier func-
tion of patients with IBS through the inhibition of in-
creased permeability and the regulation of secretion of
both pro- and anti-inflammatory mediators (Cheng et
al. 2024; Almonajjed et al. 2025; Mamieva et al. 2022).
The results of a study by Edogawa et al. (Edogawa et al.
2020) demonstrated the role of fecal proteases in the
increased intestinal barrier permeability and disrup-
tion of tight junction proteins (Aggeletopoulou and
Triantos 2024; Edogawa et al. 2020). Increased proteo-
lytic activity was especially noticeable among patients
with PI-IBS and was to affect the severity of symp-
toms (Aggeletopoulou and Triantos 2024; Edogawa et
al. 2020). Furthermore, GM has been demonstrated
to play a pivotal role in mucus production, which in
turn serves as a protective barrier between the epi-
thelial cells and the intestinal lumen (Aggeletopou-
lou and Triantos 2024). The composition of the mu-
cus layer is primarily influenced by bacteria such as
Ruminococcus spp., Bacteroides thetaiotaomicron and
E prausnitzii (Aggeletopoulou and Triantos 2024;
Almonajjed et al. 2025).

4.4. Gut microbiota-brain axis

The gut-brain axis is defined as a system of bidi-
rectional communication between the gastrointestinal
tract and the nervous system (both the central nervous
system and the autonomic nervous system) involving
neuronal, endocrine and immune pathways (Cheng
et al. 2024; Shrestha et al. 2022; Baj et al. 2019). This
interaction has been demonstrated to regulate gut mo-
tility and sensitivity, also in addition to modulating
emotional and pain responses (Aggeletopoulou and
Triantos 2024). It is hypothesised that this connec-
tion is involved in IBS development. The concept of
a GBA has been proposed, suggesting a potential role
for GM in this process (Cheng et al. 2024). The GM
has been implicated in the production of neurotrans-
mitters (e.g. serotonin), modulators, and metabolites
(e.g. short-chain fatty acids, tryptophan), as well as in
maintaining the integrity of the intestinal barrier (Ag-
geletopoulou and Triantos 2024; Shrestha et al. 2022).
The influence of the gut microbiome on the function-
ing of patients diagnosed with IBS is a subject of much
debate, with studies suggesting both positive and neg-
ative influences (Aggeletopoulou and Triantos 2024).

It has been observed that pathogenic bacteria, such as
Pseudomonas aeruginosa and Campylobacter jejuni,
have been shown to proliferate in an environment
stimulated by stress-related neurotransmitters. These
bacteria have been implicated in the enhancement of
gut permeability, the onset of visceral pain, and, in the
case of P aeruginosa, the promotion of inflammato-
ry activity (Aggeletopoulou and Triantos 2024). Cy-
tokines, defined as proteins that regulate the immune
system, have been implicated in inflammatory process-
es. The principal cytokines involved are IL-6, IL-8 and
TNF-a, which have also been associated with stress,
anxiety and depression in IBS (Almonajjed et al. 2025).
Recent studies have demonstrated that neuroinflam-
mation can be triggered by SCFAs produced by bacte-
ria. These SCFAs have been observed to stimulate the
recruitment of immune cells within the affected area
(Shrestha et al. 2022). Conversely, beneficial microor-
ganisms, exemplified by bacteria such as Bifidobacteri-
um spp., have been observed to produce neurotrans-
mitters including gamma-aminobutyric acid (GABA)
and serotonin. The efficacy of these compounds in en-
hancing serotonin receptor expression and mitigating
the deleterious effects of diverse stimuli on the brain
has been demonstrated (Aggeletopoulou and Triantos
2024). Consequently, they have been shown to mod-
ulate patient mood and stress responses in a positive
manner, thereby enhancing overall well-being

indicating considerable corpus of evidence has
been amassed which indicates the involvement of GM
in the regulation of the hypothalamic-pituitary-ad-
renal (HPA) axis. The process is primarily driven by
pro-inflammatory cytokines (IL-6 and IL-8), which are
produced by Aspergillus fumigatus, Candida albicans,
and Saccharomyces cerevisiae fungi in the intestinal
mucosa (Shrestha et al. 2022; Chong et al. 2019). The
ultimate outcome of this axis is the secretion of cortisol
from the adrenal cortex. Dysregulation of this axis is
hypothesised to be the underlying cause of the psycho-
logical disorders experienced by patients with IBS, in-
cluding anxiety, stress and depression. These disorders
have been shown to affect visceral hypersensitivity,
intestinal motility and permeability, GM composition
and immune response (Mamieva et al. 2022; Chong et
al. 2019). Among these patients, an increased abun-
dance of E. coli, Pseudomonas spp., Enterobacteriaceae
family, Streptococcus spp., Prevotella spp., and Clostrid-
ium spp. has been observed, while levels of Lactobacil-
lus spp. have been shown to be decreased (Shrestha et
al. 2022).
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5. Changes in the gut microbiota composition in de-
pendence on subtype of IBS

Recent research (Cheng et al. 2024; Chong et al.
2019; Surdea-Blaga et al. 2024) has focused on alter-
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ations in the qualitative and quantitative composition
of the gastrointestinal microbiota in patients diag-
nosed with IBS, categorised by age and other health
parameters (Table 2).

Table 2: Differences in gut microbiota qualitative-quantitative composition in depending on subtype

of irritable bowel syndrome.

Changes in gut microbiota
Subtype Ref.
increase decrease
Enterobacteriaceae, Proteobacteria, Firmicutes, | Actinobacteria, Bacteroidetes, Ruminococcaceae,
Clostridiales, Bacteroides, Lactobacillus, Methanobacteriaceae, Parasuterella,
. . . Cheng et al. 2024;
Prevotella, Lactobacillus, Bifidobacterium, Prevotella,
S ) . ) Chong et al. 2019;
IBS-D Escherichia coli, Enterococcus, Faecalibacterium, Lachnospira,
. i, . Surdea-Blaga et al.
Pseudomonas aeruginosa, Dorea Turicibacter, Weisella,
. 2024
Oxolobacter, Oceanobacillus,
Collinsella aerofaciens
Bacteroides, Bacteroides, Methanobrevibacter,
Clostridiales, Christensenellaceae, Bifidobacterium catenulatum, Cheng et al. 2024;
IBS-C Veilonella, Prevotella Chong et al. 2019;
Akkermansia, Methanobrevibacter, Pseudomo- Surdea-Blaga et al.
nas aeruginosa, Methanobrevibacter smithii 2024
IBS-M - Faecalibacterium prausnitzii
Cheng et al. 2024
IBS-U Pseudomonas aeruginosa -

6. Therapeutic approach in irritable bowel syndrome

A considerable number of therapeutic strategies
have been developed for the purpose of modulating the
composition of the GM in patients diagnosed with IBS.
These strategies encompass dietary modifications, the
supplementation of antibiotics, probiotics, synbiotics,
prebiotics, postbiotics, and FMT (Cheng et al. 2024;
Aggeletopoulou and Triantos 2024).

6.1. Diet

In the context of treating patients suffering from
IBS, diet plays a pivotal role, with low FODMAPs be-
ing of particular significance. Evidence suggests that
this ddietary is efficacious in reducing symptoms as-
sociated with IBS, including bloating, visceral pain and
general discomfort (Cheng et al. 2024; Almonajjed et
al. 2025; Chong et al. 2019). The ingestion of plant-
based proteins has been associated with an increased
levels of beneficial bacteria (e.g. Bifidobacterium spp.,
Lactobacillus spp.) and a decreased levels of pathogenic

bacteria (e.g. Bacteroides fragilis and Clostridium per-
fringens) (Shaikh et al. 2023). The low FODMAP diet
has also been observed to reduce inflammatory ac-
tivity and increase gut permeability (Aggeletopoulou
and Triantos 2024). However, it is important to note
that this dietary approach is associated with certain
disadvantages, including nutritional deficiencies, re-
duced fibre intake, constipation, and an imbalance in
GM composition, characterised by decreased levels of
beneficial bacteria (Cheng et al. 2024; Almonajjed et
al. 2025). Additionally, the efficacy of this therapeutic
approach may be subject to variation depending on the
IBS subtype (Almonajjed et al. 2025).

6.2. Antibiotics

Antibiotics have been posited as a potential nov-
el therapeutic approach in the management of IBS.
In clinical practice, a range of antibiotic medications
have been employed, including neomycin, doxycycline,
amoxicillin/clavulanate, norfloxacin, and rifaximin
(Cheng et al. 2024; Shaikh et al. 2023). Notably, the lat-
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ter was endorsed by the American Journal of Gastro-
enterology for the management of IBS (Shaikh et al.
2023). The benefits of rifaximin include a limited spec-
trum of side effects, low levels of resistance and toxici-
ty, and ease of administration (by mouth) (Shaikh et al.
2023; Chong et al. 2019). The effectiveness of rifaximin
was emphasized in two clinical trials (TARGET 1 and
TARGET 2), where improvements in symptoms were
evident among patients with IBS-D in comparison to
the control group (Shaikh et al. 2023). Antibiotics, as
a form of targeted therapy, have been shown to reduce
levels of pathogenic bacteria, such as E. coli and Entero-
bacteriaceae (Aggeletopoulou and Triantos 2024). The
beneficial effect of antibiotics in IBS has been observed
in the reduction of symptoms, including bloating or
general discomfort (particularly in IBS-D), and alter-
ations in immune and inflammatory responses (Agge-
letopoulou and Triantos et al. 2024; Shaikh et al. 2023).
It is imperative to emphasise that patients diagnosed
with IBS should adhere to antibiotic usage guidelines,
as misuse of these medications can lead to an escala-
tion in bacterial resistance, the emergence of adverse
effects, resistance to the antibiotic treatment, and a
disruption in the intestinal microbiota (i.e. dysbiosis)
(Cheng et al. 2024).

6.3. Prebiotics, probiotics, synbiotics and postbiotics

The qualitative and quantitative composition of the
GM can be modified to a considerable extent through
simple means (Table 3). Such modifications can be
achieved by adjusting dietary habits to incorporate
fibre-rich foods, as well as by introducing probiotic
bacterial supplements that have been demonstrated
to possess beneficial properties. The efficacy of a pro-
biotically enriched microbiome can be augmented by
paraprobiotic preparations (i.e. non-viable, inactivated
bacteria or their cellular components) and/or postbi-
otic preparations (i.e., products of bacterial metabo-
lism or equivalent synthetic products that beneficially
modulate the immune response of the macroorganism
and reduce inflammation) (Martyniak et al. 2021). The
aforementioned approaches are used to: (a) the bind-
ing of immune function, (b) the alleviation of symp-
toms of irritable bowel disease, (c) the reduction of the
severity of allergies, (c) the prevention and treatment
of tooth decay, and (d) the prevention and treatment of
metabolic syndrome (Luzzi et al. 2024).

Table 3: Prebiotics, probiotics, synbiotics and postbiotics used in alleviating symptoms of irritable bowel syndrome

that can be administered
orally as a dietary supple-
ment

cial bacteria (Lactobacillus spp., Bifidobacterium spp.), inhibi-
tion of growth of pathogenic bacteria, modulation of both anti-
and pro-inflammatory cytokines, participation in production of
SCFAs, production of neurotransmitters, improve symptoms in
IBS (e.g. abdominal pain, bloating), tighten gut barrier, regula-
tion of GBA, improve gut barrier integrity and mucus produc-
tion, reduction of intestinal permeability, improve patient’s qual-
ity of life and mood, influence on the both innate and adaptive
immunity, with interaction occurring with epithelial cells, den-
dritic cells, macrophages and lymphocytes through pattern-rec-
ognition receptors, helping regulate Tcell balance (especially
boosting Treg. to reduce inflammation), prevention antibioticas-
sociated diarrhea, necrotizing enterocolitis, pouchitis, and travel-
er’s diarrhea, in vitro and animal studies indicate improved burn
wound healing with Saccharomyces cerevisiae, and prevention

or reduction of eczema through mechanisms involving the GBA

Biotics in Potential use for the pre- Therapeutic activity Ref.
prophilaxis | vention and treatment

or ther-

apeutic

approach

Probiotics | Beneficial bacteria strains | The reduction on gut inflammation, increase the level of benefi- | Cheng et al. 2024;

Aggeletopoulou and
Triantos 2024;
Almonajjed et al. 2025;
Shaikh et al. 2023;
Martyniak et al. 2021;
Luzzi et al. 2024;

Qiao et al. 2025;

Maftei et al. 2023;
Campaniello et al. 2023;
Rijkers et al. 2011;
Ranjha et al. 2021;
Fuochi and Furneri 2023
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Prebiotics

* Dietary fibers that

are non-digestible food
components by human
enzymes and not absorbed
by the human small intes-
tine. They reach the colon
where they are fermented
by bacteria present in the
GM

* Present naturally in
multitude of plant foods,
including artichokes,
asparagus, chicory, gar-
lic, onions, wheat, and

bananas

« It can be synthesised and
incorporated into food

products

Promotion of growth of beneficial bacteria, improve symptoms
in irritable bowel syndrome, production of SCFAs (including
byturate, propionate and acetate), regulation of gut motility,
improve intestinal barrier function, reduction of inflammatory
processess, anti-oxidative activity, regulation of cholesterol and
lipids synthesis

Aggeletopoulou and
Triantos 2024;
Almonajjed et al. 2025;
Shaikh et al. 2023;
Chong et al. 2019;
Martyniak et al. 2021;
Luzzi et al. 2024

Synbiotics

* Products that contain
both prebiotics and pro-
biotics

« It is possible to formu-
late such products in two
different ways: the first
approach, known as the
complementary approach,
the prebiotic and probiotic
substances work inde-
pendently; in the second
approach, known as the
synergistic approach, the
prebiotic and probiotic
substances work together

Improve probiotics survival in gastrointestinal tract, reduction of
symptoms in IBS (bloating, abdominal pain), increase a bowel
movement frequency, reduction of levels of pro-inflammatory
cytokine (IL-8, TNF-a) and increase of levels of anti-inflamma-
tory cytokines (IL-10), improve intestinal barrier integrity and
gut motility

Almonajjed et al. 2025;
Shaikh et al. 2023;
Chong et al. 2019;
Martyniak et al. 2021;
Luzzi et al. 2024

Postbiotics

* Classified as either (a)
products resulting from
bacterial metabolism, or
(b) synthetic products that
possess the capability to
modulate inflammation

and the immune response

It is assumed that improve symptoms in IBS (particularly in

IBS-D) and reduce inflammatory activity

Almonajjed et al. 2025;
Martyniak et al. 2021

6.4. Fecal microbiota transplantation (FMT)

Another therapeutic approach in the treatment of
IBS is FMT. This strategy involves the transfer of a stool
solution from healthy individuals to patients with IBS,
with the objective of restoring a healthy GM compo-
sition, improving its diversity, increasing the level of
beneficial bacteria and decreasing the level of patho-
genic species particularly associated with IBS (Almo-

najjed et al. 2025). FMT leads to strengthening of the
intestinal barrier, reduction of inflammatory process-
es, modification of the immunological response and,
potentially, improvement of the GBA (Almonajjed et
al. 2025). The application of FMT in the treatment of
patients infected with Clostridioides difficile has been
documented (Cheng et al. 2024; Shaikh et al. 2023).
FMT donors might be both healthy relatives or anony-
mous. In case of anonymous donors there is an oppor-
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tunity to select donors with a high diversity in the com-
position of GM and obtained stool might be stored in
the freezers by a long time and then used for multiple
patients (Cammarota et al. 2019; Halkjeer et al. 2023).
There are several methods which can be used in FMT
including endoscopic procedures or using gastro-du-
odenal or rectal tube. Also capsules delivery led to
release the stool in the small intestines (Halkjeer et al.
2023). The results obtained from various randomised
clinical trials (RCTs) have been found to be inconsis-
tent. Studies carried out by El Salhy et al. (El-Salhy et al.
2019), Johnsen et al. (Johnsen et al. 2018) and Holvoet
et al. (Holvoet et al. 2021) have demonstrated a favour-
able clinical response following FMT treatment, char-
acterized by an enhancement in symptoms related to
IBS, in comparison to the control group that received
a placebo. Conversely, the results of randomised clin-
ical trials conducted by Halkjeer et al. (Halkjeer et al.
2018) demonstrated that the control group (placebo)
exhibited a superior clinical response in comparison to
patients who had undergone FMT. The observed vari-
ations in outcomes among studies may be attributable
to several factors, including individual patient charac-
teristics, delivery method, or donor selection (Almo-
najjed et al. 2025). At present, FMT is not recommend-
ed as a first-line treatment for IBS, and further research
is required to ascertain the beneficial effect of FMT on
the therapeutic success of patients with IBS (Cheng et
al. 2024; Chong et al. 2019).

6.5 Mind-body therapies

The experiences of numerous clinicians have un-
derscored the necessity to monitor the mental health of
patients diagnosed with IBS. In the context of diagno-
sis and treatment, the incorporation of patient surveys
has been demonstrated to facilitate the delivery of ho-
listic care, encompassing a combination of medication,
dietary consultations, and psychological support. The
significance of educating patients with psychosomatic
disorders in the ability to name and recognise emotions
and cope with stress is also emphasised. In cases where
patients are experiencing symptoms that are deterio-
rating as a result of anxiety or stress, the utilisation of
mind-body therapies, cognitive-behavioral therapies
(including hypnosis, meditation, various forms of re-
laxation or biofeedback), is recommended (Chey et al.
2020). The International Foundation for Gastrointes-
tinal Disorders also recommends diaphragmatic/ab-

dominal breathing techniques, progressive muscle re-
laxation by tensing and then relaxing different muscle
groups, and visualisation/positive imagery techniques
to facilitate the imaginative process of envisioning one-
self in a calm, quiet and relaxing place. By focusing on
a particular place, the patient is able to divert their at-
tention away from disturbing thoughts. It is imperative
that patients with IBS invest time in acquiring knowl-
edge about the condition, identifying potential triggers
for symptoms, and engaging in the relaxation exercises
that have been outlined. This approach enables them to
take proactive, constructive, and innovative measures
to enhance their ability to cope with and manage their
symptoms effectively (Zeichner 2005).

It is imperative to adopt effective coping mech-
anisms to manage the stress and anxiety that may be
precipitated by IBS. It has been demonstrated that
breathing exercises, meditation and yoga can assist in
the reduction of stress and tension. Relaxation tech-
niques can be used in two ways: as a supplement to
pharmacological therapy or as an alternative when
medication is not sufficiently effective (Chey et al.
2020; Zeichner 2005).

7. Limitations of current therapies

It is worth highlighting that the therapeutic op-
tions currently employed in the treatment of IBS are
associated with several limitations. There is a paucity
of long-term data on the effects of probiotics as a ther-
apeutic treatment and the adverse events associated
with it. It is imperative to acknowledge that the effi-
cacy of probiotic therapy is contingent upon the spe-
cific strain used, the dosage administered and the du-
ration of the treatment regimen. To date, these factors
have not been optimised for IBS subtypes. The safety
profile is also not unclear, particularly in the case of
long-term therapy (Umeano et al. 2024; Almonajjed et
al. 2025). A further limitation of the IBS therapies in
current use is the relatively small sample size and the
limited duration of the studies. This limits the capacity
to derive robust conclusions, particularly with regard
to the efficacy of probiotics in managing different sub-
types of IBS. Further research is required with larger
populations and longer durations in order to evaluate
the long-term efficacy of probiotics and to determine
their effect on different subtypes of IBS (Ruiz-Sanchez
et al. 2024; Almonajjed et al. 2025). A considerable
number of medications, comprising antispasmodics,
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antidepressants and several novel agents, have been
observed to offer only a marginal improvement in IBS
symptoms. It is important to note that the alleviation of
gastrointestinal symptoms does not necessarily result
in a substantial enhancement of the patient’s overall
quality of life. This underscores the necessity for a ho-
listic approach (Talley 2003; Sainsbury and Ford et al.
2011; Hammerle et al. 2008; Brenner et al. 2024). Cer-
tain medications, notably older antidepressants such as
tricyclic antidepressants (TCAs), have been observe to
induce significant adverse effects that can potentially
restrict their utilisation, especially in individuals suf-
fering from IBS, who may already be afflicted by gas-
trointestinal discomfort (Wall et al. 2011; Lacy et al.
2009). Despite the evidence that brain-gut behaviour
therapy (BGBT) is efficacious in the amelioration IBS
symptoms and quality of life, access to this therapy is
limited by a paucity of trained practitioners, patient
time constraints and cost. Furthermore, clinicians may
also have a lack of awareness of the specific nature of
BGBT and its distinction from general psychotherapy,
which may potentially hinder referrals (Brenner et al.
2024). Personalised treatment strategies that consider
individual symptom profiles, dietary factors, and psy-
chological aspects are often required, but their imple-
mentation can be complex (Sainsbury and Ford et al.
2011).

8. Future perspectives

The integration of advanced omics technologies
and machine learning techniques has the potiential to
significantly enhance future research in then compass-
ing the analysis of microbiome composition and the
identification of therapeutic targets. Combined with
next-generation sequencing (NGS) technologies, such
as shotgun metagenomics, provide deeper insights into
the structure and function of the GM. The application
of advanced techniques (metatranscriptomics or me-
tabolomics) holds promise in enhancing our com-
prehension of the microbial functional pathways that
contribute to the pathogenesis of IBS. These methods
provide a more detailed picture of the complex inter-
actions between the microbiome and host physiology,
helping to identify novel therapeutic targets necessary
to develop effective microbiome-targeted interven-
tions. The use of these instruments has the capacity to
expedite the identification of diagnostic biomarkers,
improve patient risk assessment, and refine the predic-
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tion of treatment response in IBS (Fukui et al. 2020;
Jacobs and Lagishetty et al. 2023; Aggeletopoulou and
Triantos 2024). Current research on IBS is confronted
with a number of methodological challenges. The ma-
jority of studies rely on the sequencing of the 168S ri-
bosomal RNA subunit (rRNA) gene, which offers only
genus-level resolution and fails to provide function-
al insight into the microbiome. In contradistinction
to NGS, more advanced techniques, such as shotgun
metagenomic sequencing and RNA sequencing, offer
greater sensitivity, resolution and deeper understand-
ing of microbial structure and function. Furthermore,
most studies focus on stool samples, which may not
fully represent the microbiome of other intestinal re-
gions, such as the small intestine or mucosal layer. In
addition, while some studies assess the microbiota at
different time points, most are limited to two measure-
ments, making it difficult to track changes in microbi-
ota and metabolites over time, especially during dis-
ease exacerbations or remission (Aggeletopoulou and
Triantos 2024; Ankersen and Weimers 2021; Ek and
Reznichenko 2015; Mars and Yang 2020; Meydan and
Afshinnekoo 2020).

9. Conclusions

Irritable bowel syndrome is a multifactorial gas-
trointestinal disorder involving numerous factors, in-
cluding genetic predisposition, psychoenvironmental
factors, and alterations in the composition of GM. Sci-
entific reports published in recent years indicate that
GM play a crucial role in the development and pro-
gression of IBS, particularly in cases of reduced levels
of certain GM species, a condition referred to as dys-
biosis. The involvement of GM in numerous process-
es associated with IBS has been well-documented, in-
cluding nutrient absorption in the intestines, immune
response regulation, the functioning of the GBA, and
mucosal immune regulation. However, due to the sub-
stantial interindividual variability, it remains challeng-
ing to identify a universal GM composition in IBS. The
efficacy of the available treatment methods is a con-
tentious issue. The therapeutic approach to IBS should
be personalised, and future research should focus on
the search for microbial species that might be used as
biomarkers for IBS. These biomarkers would help to
differentiate between the subtypes of this gastrointes-
tinal disorder.
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Abstract: In recent years the field of probiotics, prebiotics, synbiotics and postbiotics has been extensively studied. Preparations including
live and inanimate microorganisms, their parts and substances that selectively stimulate their growth, are promising in treatment or ame-
lioration of symptoms in many diseases. The aftermath of the COVID-19 pandemic has forced us to face complications such as post-acute
COVID-19 syndrome and a general decrease in population immunity, for which treatment with probiotics, prebiotics, synbiotics and post-
biotics is promising. The use of such preparations can have a positive effect on the immune system and has also shown positive effects in
major depressive disorder. Due to the rapid development in the field a lot of confusion and misconceptions emerged, especially regarding
the use of terms and definitions. This article aims to present a clear classification of these products according to International Scientific
Association of Probiotics and Prebiotics (ISAPP) guidelines as well as basic mechanisms of action and efficacy of selected preparations.
Authors of this article use the term ‘biotic(s)’ to refer collectively to probiotics, prebiotics, synbiotics and postbiotics. While this term has
not been officially established, it is used by other authors in the scientific literature. The taxonomic nomenclature used in this article has
been updated according to the most recent taxonomic reclassification.

1. Introduction. 2. Current classification and nomenclature for biotics. 2.1. Probiotics 2.2. Prebiotics. 2.3. Synbiotics. 2.4. Postbiotics.
3. Navigating synonyms: challenges in biotics nomenclature. 3.1. Biotics complementary mode of action and health benefits. 3.2. Molecu-
lar pathways. 3.3. Single vs multiple-strain probiotics. 3.4. Efficacy and regulatory framework of biotics. 3.5. Future perspectives.

Keywords: probiotics, prebiotics, synbiotics, postbiotics, next-generation probiotics, live biotherapeutic products;

1. Introduction

The practice of using fermentation in food prepa-
ration and preservation dates back far in the history
of human species across the globe. Despite the wide-
spread use, it was no earlier than the beginning of 20th
century that Metchnikoff proposed the beneficial val-
ue of consuming fermented foods and associated these
benefits with lactic acid bacteria (LAB) (Metchnikoff,
1907; Markowiak and Slizewska, 2017). Since then, the
idea of beneficial influence of bacteria on humans has

been extensively investigated by scientists, ultimately
leading to the formulation of the term ‘probiotic’ in
1954 and its first definition in 1965 (Vergin, 1954; Lil-
ly and Stillwell, 1965). The development in the field of
probiotics, which also led to formulation of new defi-
nitions for other biotics, has created some misconcep-
tions regarding the understanding and proper use of
these terms.

The field of biotics is characterized by a variety of
terms that frequently denote the same idea. Although
the concept of probiotics is widely understood and ac-
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cepted, other biotics such as synbiotics or postbiotics
encounter challenges due to the lack of clear under-
standing and the presence of synonymous terms and
definitions. Therefore, the International Scientific As-
sociation for Probiotics and Prebiotics (ISAPP) was
founded to bring together expert scientists in the field.
ISAPP proposed four terms and their definitions in
2014, 2017, 2020 and 2021 to create a unified nomen-
clature, respectively: probiotic, prebiotic, synbiotic and
postbiotic (Table I). The establishment of each term,
definition, and clear guidelines was preceded by a con-
vention of a panel of experts. Most of the authors in the
field assert that the nomenclature and definitions pro-
vided by ISAPP most accurately describe all microor-
ganism-derived products and substrates that are selec-
tively utilized by microorganisms, conferring a health
benefit (Hill et al. 2014; Gibson et al. 2017; Swanson
et al. 2020; Salminen et al. 2021). In this paper the au-
thors aim to compile the most current definitions of
all biotics according to ISAPP recommendations and
present them clearly, highlighting the differences and
connections. Additionally, authors discuss modes of
action of biotics and characterize selected probiotic
strains.

2. Current classification and nomenclature for
biotics

2.1. Probiotics

The term “probiotic” was first used by Vergin in
1954 in the paper “Anti-und Probiotika” (Vergin, 1954).
Lilly and Stilwell presented first definition, describing
probiotics as a growth-promoting factors produced

by one microorganism that exert beneficial effects on
another microorganism (Lilly and Stillwell, 1965).
The most recent definition was proposed by the FAO/
WHO in 2001 and was accepted, with minor grammat-
ical change, by ISAPP in 2014 as: “live microorganisms
that, when administered in adequate amounts, confer
a health benefit on the host” (FAO/WHO, 2001; Hill et
al., 2014). This definition is clear and rarely misused.
The ISAPP has published clear guidelines that precise-
ly define whether the definition is applicable — Table I
and Figure I (Hill et al., 2014).

One of the first described probiotic strains was
Lactobacillus bulgaricus, isolated by Grigorov in 1905
(Lee et al. 2024). In 1985 Gorbach and Goldin isolated
and described Lactobacillus rhamnosus GG (for more
probiotic strains and their health benefits see Table
II). Following the reclassification of the Lactobacillus
genus, this strain was renamed to Lacticaseibacillus
rhamnosus GG (Stage et al. 2020; Zheng et al. 2020).

When defining a probiotic one should deter-
mine whether beneficial effects are species-specif-
ic or strain-specific. This association can be defined
in respect of the claims for a certain probiotic. If the
claims exceed core benefits, then the probiotic should
be defined at strain level. Core benefits allow for gen-
eralization of certain effects or mode of action pres-
ent at species level. Examples of such benefits include
colonization resistance, short-chain fatty acids (SCFA)
production, vitamins synthesis or direct antagonism
(Beane et al,, 2021; O’riordan et al., 2022; Zhang et al,,
2022; Caballero-Flores et al., 2023). For more distinct
effects such as neurological, endocrinological and im-
munological effects, a strain-specific relation should be
applied accordingly (Hill et al., 2014).

Table I. Current classification and nomenclature of biotics according to ISAPP.

Name ISAPP definition Examples Examples of com- Reference
mercial products

Probiotic Live microorganisms that,  Lactobacillus acidophilus DSM Vivomixx® Hill et al., 2014
when administered in ad- 20079, Lactiplantibacillus plantarum  Lacidofil®
equate amounts, confer a 299v, Bifidobacterium longum subsp.  Enterol®
health benefit on the host.  infantis UCD272, Saccharomyces

boulardii CNCM 1-745
Prebiotic A substrate that is selec- galactooligosaccharides (GOS), Orafti® Inulin Gibson et al., 2017

tively utilized by host
microorganisms confer- Inulin

ring a health benefit.

fructooligosaccharides (FOS),

NutraFlora® FOS
BLF®100
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Synbiotic A mixture comprising live  Lactiplantibacillus plantarum ATCC  Ther-Biotic® Swanson et al.,
microorganisms and sub- 202195 and fructooligosaccharides Synbiotic 2020; Kleerebezem
strate(s) selectively uti- (FOS) Acidolac® Baby and Fiihren, 2024
lized by host microorgan- Multilac®
isms that confers a health
benefit on the host.

Postbiotic Preparation of inanimate pasteurized Akkermansia muciniphila ~ SANPROBI® Salminen et al.,
microorganisms and/ Muc” Premium 2021; Kato et al.,
or their components that EpiCor® 2024
confers a health benefit on  Neat-killed Lacticaseibacillus para- BPL1™ Postbiotic

the host.

casei MCC1849

The strain-specific effects of a probiotics can also
extend to mental health benefits leading to the formu-
lation of a term ‘psychobiotic’ Psychobiotics are prom-
ising therapeutics for diseases such as schizophrenia,
depression, autism spectrum disorder, Alzheimer’s dis-
ease, Parkinson’s disease, or Tourette syndrome (Logan
and Katzman, 2005; Liu et al., 2019; Munawar et al.,
2021; Sharma et al., 2021). Examples of psychobiotics
include Lactiplantibacillus plantarum PS128 which has
been used to ameliorate some autism symptoms (Liu
et al. 2019); four probiotic strains (Bifidobacterium

Gram-negative
bacteria e.g.:
e Escherichia
coli Nisle 1917
o Akkermansia
muciniphila
e Faecalibacterium
prausnitzii

Yeast e.g.:
e Saccharomyces

cerevisiae var.

boulardii

_

Probiotic

infantis Bi-26, Lacticaseibacillus rhamnosus HNOOI,
Bifidobacterium lactis BL-04, and Lacticaseibacillus
paracasei LPC-37) administered together with FOS
which positively affected the children with autism
spectrum disorder (ASD), contributing to behavioural
and gastrointestinal (GI) tract improvement (Wang et
al. 2020); and Bifidobacterium breve CCFM1025 which
attenuates psychiatric and gastrointestinal abnormali-

ties in patients with major depression disorder (Tian
et al. 2022).

Gram-positive

bacteria e.g.:

e [acticaseibacillus

rhamnosus GG

» Bifidobacterium
bifidum

e Streptococcus

thermophilus

Figure 1. Classification of microorganisms constituting probiotics with representative examples. Created in BioRender.
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Classifying psychobiotics as a separate group contra-
dicts the goal of unifying and simplifying scientific
nomenclature. There is no unified definition of psy-
chobiotic, but most authors describe psychobiotics as
probiotics with the specific characteristic that their
claimed health benefits are associated with mental
health (Magalhdes-Guedes, 2022; Zhu et al., 2023;
Chiano et al., 2024). Based on this common under-
standing, they should be identified as a specific type of
probiotic or sub-group/sub-class rather than a separate
group of biotics. Some authors expand the definition
of psychobiotic to include “any exogenous influence
whose effect on the brain is bacterially mediated” en-
compassing prebiotics as well (Sarkar et al., 2016, 2020;
Warda et al., 2019). The authors of this paper disagree
with such an approach, as it broadens the concept of
psychobiotic to include any biotic or any substance be-
yond the field of biotics. This approach makes it un-
clear as to what a psychobiotic might be composed of,
allowing for the possibility that two entirely different
preparations could share the same name. Psychobiot-
ics should be understood as “probiotic bacteria that
benefit mental health when consumed in adequate
amounts” (Dziedzic et al. 2024).

An important aspect of probiotics is the incorpora-
tion of genetically modified microorganisms (GMMs)
(Ma et al. 2022). Each strain’s safety must be assessed
regardless of the modification (Zhou et al. 2020). Ge-
netic engineering and tools such as CRISPR/Cas9 fa-
cilitate the development of GMMs (Wu et al. 2021;
Chen et al. 2025). ZBiotics' is one of the few probiotics
based on GMMs and the first to become commercially
available. It was designed to ameliorate the hangover
symptoms, using Bacillus subtilis modified with the
acetaldehyde dehydrogenase gene derived from Cu-
priavidus necator (Esawie et al. 2025). This probiotic
also has potential for addressing type 2 diabetes melli-
tus and non-alcoholic steatohepatitis (Saad et al. 2024;
Esawie et al. 2025). It has been proposed that GMMs
should be excluded from probiotics, with next-gener-
ation probiotics (NGP) and live biotherapeutic prod-
ucts (LBP) taking on that role (O’Toole et al. 2017).

Warda et al. proposed that the definition of probi-
otics should also include inactivated microorganisms
(Warda et al., 2019). Inanimate bacterial cells fall un-

der the definition of postbiotic and used to be referred
to as ‘heat-killed probiotics, ‘paraprobiotics’ and other
synonymous names, prior to the consensus statement
on the definition of postbiotics (Salminen et al., 2021).
Nevertheless, creating a new classification that includes
components for which definitions have already been
coined and for which clear classification have been es-
tablished, is unnecessary and hinders the development
in the field of biotics. All microorganisms, their prod-
ucts and substrates for selective utilization can be de-
scribed using four basic and defined terms (probiotic,
prebiotic, synbiotic and postbiotic) or the appropriate
chemical name of isolated metabolite. Thus, creating
a new definition seems unnecessary (Hill et al. 2014;
Gibson et al. 2017; Swanson et al. 2020; Salminen et
al. 2021).

2.2. Prebiotics

The concept of prebiotics was introduced in 1995
by Gibson and Roberfroid. Initially the following defi-
nition was proposed “A prebiotic is a nondigestible
food ingredient that beneficially affects the host by se-
lectively stimulating the growth and/or activity of one
or a limited number of bacteria in the colon and thus
improves host health” (Gibson and Roberfroid, 1995).
In this initial understanding prebiotics were exclusive-
ly connected with GI tract, as they only referred to
food ingredients. Further development of the concept
led to the formulation of a new definition: “a substrate
that is selectively utilized by host microorganisms
conferring a health benefit” (Gibson et al., 2017). This
change broadened the idea of prebiotics, allowing for
substances other than carbohydrates, which do not
have to be present in food and can be applied to body
sites other than GI tract, to be classified as prebiotics.

An important aspect of a prebiotics is their selec-
tivity, which was highlighted in the initial definition
and persists in the most recent understanding of the
term. Selectivity differentiates the prebiotics from di-
etary fibre and other substances that affect the micro-
biota in non-selective manner. While the dietary fibre
is not digested by the host, sharing this characteristic
with prebiotics, it can be utilized by gut microbiota in
general. Prebiotics, however, are utilized only by given
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group or groups of microorganisms, which, along with
the health benefit, ought to be proven experimentally
(Hutkins et al. 2024). The beneficial aspects of prebi-
otics include increased abundance of beneficial micro-
biota e.g. Bifidobacterium spp. which produce metab-
olites such as SCFA (Lai et al. 2023). The effect does
not have to be direct as long as the health benefit is ob-
tained. An example of this is the ‘cross-feeding effect,
where the production of a beneficial product, positive-
ly affecting host health, results of interaction between
two microorganisms induced by a prebiotic (Culp and
Goodman 2023). Such interaction has been observed
between Bifidobacterium longum PT4 and Bacteroi-
des ovatus HM222. When xylan was used as a carbon
source, the B. longum PT4 showed an increased growth
in the presence of B. ovatus HM222, indicating poten-
tial cross-feeding effect (Vega-Sagardia et al. 2023).

The most common prebiotics are galactooligosac-
charides (GOS), fructooligosaccharides (FOS) or in-
ulin (Flaujac Lafontaine et al. 2020). Candidates for
prebiotics are constantly being researched, with human
milk oligosaccharides (HMO) being an example. Hu-
man milk oligosaccharides play an important role in
early stages of gut microbiota development. HMO are
selectively metabolized by Bifidobacteriaceae and es-
pecially Bifidobacterium longum subsp. infantis. They
can also prevent pathogen adhesion, making HMO
very promising candidates for prebiotic (Okburan and
Kiziler, 2023).

To conclude, the most important characteristic of
prebiotics are: being non-digestible by host, selectively
stimulating the growth and/or the activity of a group of
microorganisms, conferring health benefit to the host
(Jenkins and Mason 2022).

2.3. Synbiotics

The concept of synbiotics emerged alongside pre-
biotics. It was the same article where Gibson and
Roberfroid defined prebiotics, they also proposed the
concept of the synbiotics as the combination of probi-
otics and prebiotics (Gibson and Roberfroid 1995). The
initial definition described synbiotics as: “a mixture of
probiotics and prebiotics that beneficially affects the

host by improving the survival and implantation of live
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microbial dietary supplements in the gastrointestinal
tract, by selectively stimulating the growth and/or by
activating the metabolism of one or a limited number
of health-promoting bacteria and thus improving host
welfare” (Gibson and Roberfroid, 1995).

The definition was updated by ISAPP in 2020,
describing synbiotics as: “a mixture comprising live
microorganisms and substrate(s) selectively utilized
by host microorganisms that confers a health benefit
on the host” (Swanson et al., 2020). The updated and
simplified definition broadens the understanding of
the term. Combination of prebiotics and probiotics
are still referred to as synbiotics, specifically as com-
plementary synbiotics - Figure 2. Such products are
not designed to work exclusively together, they are
administered together but each component must be
a defined biotic separately (with all the requirement
for each accordingly). The effect of complementary
synbiotic is no greater than when the components of
the synbiotic are administered separately. Updating
the definition allowed for the concept of a synergis-
tic synbiotics to emerge. Elements of such synbiotics
do not have to be a predefined prebiotics and probi-
otics. The microorganism and the substance used in
the formulation depend on one another in such way
that, when used separately, they exert much weaker or
no health benefit. Such approach allows for a develop-
ment of new synbiotics, components of which haven
not necessarily been used previously in other biotics.
It is also important to note that in the most recent
definition of synbiotics, the understanding of host mi-
croorganism both refers to autochthonous and alloch-
thonous microbiota, latter administered in synbiotics
or probiotics (Swanson et al., 2020). This is crucial
since microorganisms present in synergistic synbiot-
ic formulations might lack the ability to colonize the
gut (Walter et al. 2018). Most commercially available
synbiotics are complementary (Gomez Quintero et al.
2022). To the best of authors’ knowledge, no syner-
gistic synbiotic formulations are currently available on
the market. However, ex vivo studies have demonstrat-
ed the potential of synergistic synbiotics, highlighting
the need for further research, particularly through
in vivo investigations (De Bruyn et al., 2024; Ghy-
selinck et al., 2024).
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Figure 2. Comparative characteristics of complementary and synergistic synbiotics. Created in BioRender.

2.4. Postbiotics

Probiotics, in addition to mandatory presence of
live microorganism, naturally contain dead cells. For
a long time, the influence of dead microorganisms in
probiotics has been overlooked. Since the potential of
inanimate cells to confer a health benefit in host has
been recognized, multiple names to describe such
preparations have emerged in the literature. Examples
include: ‘heat-killed probiotics, ‘paraprobiotics, ‘tyn-
dallized probiotics’ and ‘postbiotics’ (Barros et al. 2021;
Ding et al. 2021; Boyte et al. 2023; Bolzon et al. 2024).
In 2019, ISAPP reviewed existing names describing
preparations containing dead microorganism cells and,
two years later, published the consensus statement on
the definition of postbiotics: “preparation of inanimate
microorganisms and/or their components that confers
a health benefit on the host” (Salminen et al., 2021).

The term “postbiotic” is coherent with other de-
fined biotics and well describes the characteristics of
the preparation - Figure 3. It is important to distin-
guish vaccines, which can include dead microorgan-
ism cells, and purified metabolites of microorganisms
from postbiotics. Vaccines and metabolites do not fall
under the definition of postbiotic. Metabolites can be
present in postbiotic preparations but only togeth-
er with dead cells and/or their parts (Salminen et al,,

2021). Microbial metabolites can be named according
to their chemical structure or origin, thus creating ad-
ditional definitions such as: “compounds produced by
the microbial metabolism, namely postbiotics” seems
unnecessary (Puccetti et al. 2020).

Postbiotics, unlike vaccines, do not aim to provide
post-vaccination immunity (Aggarwal et al. 2022).
While they can affect the immune system, their effects
differ fundamentally from those induced by vaccines
(Shukla and Shah 2018). Moreover, postbiotics are not
designed to prevent any specific diseases, which is the
primary purpose for vaccines. For these reasons, asso-
ciating postbiotics with vaccines is both incorrect and
misleading (Salva et al. 2021; Prygiel et al. 2022).

Even though the clear definition of postbiotics has
been proposed, authors still use synonymic names,
such as: paraprobiotics (Lee et al., 2023; Mudaliar et
al., 2024), heat-killed probiotics (Poaty Ditengou et al.,
2023; Yoon et al., 2024), tyndallized probiotics (Bolzon
et al., 2024). These multiple terms often describe the
same concept, yet some involve modified definitions.
For instance, “paraprobiotics, which contain inacti-
vated nonviable probiotics” (Docampo et al., 2024).
This understanding narrows the potential of inanimate
microorganisms that could be used in preparations,
since they would have to be also identified as probiot-
ics, which is not obligatory for postbiotic preparations.
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This narrow understanding also excludes metabolites
and cell parts, which are included in the broader post-
biotic definition (Vinderola et al. 2022).

The term ‘heat-killed probiotics, used for prepara-
tions containing dead microorganism cells that pro-
vide a health benefit on the host is also problematic.
Probiotics, according to their well understood and
widespread definition must contain: “live microorgan-
isms that, when administered in adequate amounts”
(Hill et al., 2014). Hence, the use of the name probiotic
for microorganisms that have been heat-killed seems
inappropriate. The inconsistent use of multiple names
for the same definition is highly unfavourable and
hampers the development of postbiotics (Vinderola et
al. 2024).

As mentioned above, the microorganisms used in
postbiotic preparations do not have to be classified
as probiotics, though they have to be clearly defined.
This is important in context of the safety of use such
as the presence of genes conferring antibiotic resis-
tance (Daniali et al. 2020). The method of inactivation
is yet another important aspect of postbiotics. Differ-
ent methods of inactivation may influence the cells
in different ways, thereby altering the characteristics
of the final product (Zhong et al., 2024). Inactivation
methods can broadly be categorized into two groups:
thermal and non-thermal (Zhu et al., 2025). The use of
temperature, in methods such as sterilization, pasteur-
ization, freeze drying or spray drying, remain the most
used due to standardized procedures and relatively

\I
,\

Microorganisms

Inactlvatlon

Inanimate microorganisms
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low operational costs (Rafique et al., 2023). However,
these approaches have notable limitations, as they may
compromise beneficial cellular properties during the
inactivation process (Sun et al., 2023). Non-thermal
inactivation methods include UV, ultrasonic steriliza-
tion, high-pressure, pulsed electric field, irradiation,
supercritical carbon dioxide and exposure to extreme
pH conditions (Zhu et al., 2025). Those physical and
chemical methods allow heat-labile elements to retain
their bioactivity (Zhong et al., 2022). The use of inan-
imate microorganisms may also enable researchers to
use genetically modified organisms, as the safety of use
when microorganisms are administered in non-viable
form is superior (Salminen et al., 2021).

One of the challenges in development of postbiotic
preparations is the evaluation of number of cells and/
or their parts present in the preparation. Establishing
the CFU by plating method is prone to undervaluation
of the cells present, as this technique omits dead cells.
Flow cytometry (FCM) seems to be more applicable,
as it can differentiate live and dead cells (Bolzon et al.,
2024).

Though postbiotics face challenges, they can be
superior to probiotics. Probiotic shelf life is a problem
due to the mandatory presence of live microorgan-
isms at declared concentration. The use of dead cells in
postbiotics eliminates the problem of CFU fluctuations
during shelf life, proposing a good alternative (Salmi-
nen et al.,, 2021).
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3. Navigating synonyms: challenges in biotics no-
menclature

The field of biotics is rife with synonymous terms
and definitions, which hinder its development. Stake-
holders may overlook significant literature related to
the given topic due to the presence of multiple names,
especially when they are not familiar with all the exist-
ing synonyms. The ISAPP has presented four names
(probiotic, prebiotic, synbiotic and postbiotic), defi-
nitions and clear guidelines for each. Nonetheless, as
highlighted above, incoherent nomenclature remains
prevalent (Warda et al. 2019; Lee et al. 2023; Yoon et
al. 2024).

There are three terms in the field that authors
find particularly important to discuss: psychobiotic,
next-generation probiotic (NGP) and live biothera-
peutic product (LBP). The term ‘psychobiotic’ is com-
monly used in the literature to refer to a product pro-
viding health benefits regarding the nervous system
and which has potential in treatment of neurological
disorders (Cheng et al. 2019; Munawar et al. 2021;
Sharma et al. 2021). However, the authors of this arti-
cle believe that the proposed definition of psychobiotic
does not present enough differences to justify it as a
separate biotic (Zhu et al. 2023; Chiano et al. 2024).
The distinction merely narrows the health benefit to
the mental health, thus psychobiotics fall under the
broader definition of probiotics (Hill et al. 2014). Since
this issue has already been addressed in relation to pro-
biotics, the discussion will now focus on NGP and LBP.

NGPs are described as new microbial strains iso-
lated using culture independent methods, primarily
genome sequencing. There is no unified and common
definition; authors only often present differences be-
tween NGPs and conventional probiotics (Singh and
Natraj, 2021; Abouelela and Helmy, 2024). Al-Fakhra-
ny and Elekhnawy are one of few authors proposing the
definition for NGP: “living microbes identified on the
base of comparative microbiome investigations which
confer health advantages to their host when taken to
suitable extents” (Al-Fakhrany and Elekhnawy, 2024).
This definition only narrows down the potential source
of NGP, which is not restricted in any way by current
definition of probiotic. The only difference that authors
of this paper find compelling enough to consider the
NGP as a separate group of biotics is the personaliza-
tion of the preparations (Singh and Natraj 2021).

Live biotherapeutic product (LBP) is a term coined
in the USA by Food and Drug Administration (FDA),

to regulate the field of probiotics. It can be defined as:
“a biological product that: 1) contains live organisms,
such as bacteria; 2) is applicable to the prevention,
treatment, or cure of a disease or condition of human
beings; and 3) is not a vaccine” (FDA, 2016). LBPs
share more similarities with NGPs rather than with
conventional probiotics. The context of application in
treatment of a given disease, as stated in the second
part of the definition, is crucial in the understanding
the differences. Microorganisms do not have to ex-
hibit specific health claim to be considered probiotics.
According to the most recent probiotic definition, it
is sufficient to demonstrate safety of use and general
health benefits for the host, proven through human
studies (Hill et al., 2014). Therefore, the terms LBP and
probiotic cannot be used interchangeably, despite their
similarities.

For stakeholders outside of the USA, the use of the
term LBP may seem unjustified, given the presence
of four biotics defined by ISAPP. Regardless, the term
LBP is also used in EU, where its regulatory framework
has been established in 2018 (Ph. Eur. 2018). Since
probiotics are only required to demonstrate a general
health benefit, the term LBP has been adopted to refer
to products intended for the treatment or prevention
of disease (Franciosa et al. 2023). This can be confus-
ing since in Poland (member of EU) there are probi-
otics already functioning as drugs that aim to treat or
prevent disease, which is not excluded by the ISAPP
definition of probiotic (Hill et al., 2014; Ruszkowski et
al. 2018).

3.1. Biotics complementary mode of action and
health benefits

The interactions between probiotics, prebiotics,
synbiotics, and postbiotics are complex and synergis-
tic, lying in their complementary roles. As described
before prebiotics enhance the growth of probiotics,
synbiotics optimize the combined effects of probiotics
and prebiotics, and postbiotics offer additional health
benefits through their bioactive compounds. This in-
terconnected relationship helps maintain a balanced
gut microbiome, supports immune function, and im-
proves overall health (see Figure 4).

The efficacy of biotics has been demonstrated in
numerous randomised controlled trials (Andresen et
al. 2020; Lukasik et al. 2022; Srivastava et al. 2024; Lau
et al. 2024). Some biotics have been registered as drugs
(see Table IIT and IV), further proving their effective-
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ness. Although the positive effects of biotics are ex-
tensively studied, their direct mechanisms of action are
often not fully understood. Human microbiota plays
an important role in health and diseases, yet its com-
plexity makes creating representative models to study
the relations very challenging (El-Sayed et al. 2021;
Rios Garza et al. 2023).

The bidirectional gut-brain axis plays an import-
ant role in maintaining homeostasis. The dysfunction
of the axis has been shown in diseases such as irrita-
ble bowel syndrome (IBS), major depressive disor-
der or ASD (Socata et al. 2021; Hillestad et al. 2022).
Administration of probiotics can positively influence
the abnormal functioning of the axis through both di-
rect and indirect interactions. Production of bioactive
compounds such as serotonin or SCFA and interac-
tion with enteric and autonomic nervous system, are
possible ways in which probiotics can positively affect
the axis (Mayer et al. 2022). The high abundance of
microbiota in various body sites, particularly in the
colon, is the principle behind the colonization resis-
tance. In health, body sites are colonized by symbiotic
microorganisms, inhibiting the colonization of patho-
gens — Figure 4 (Caballero-Flores et al. 2023). When
this state is disturbed, body sites can be colonized by
pathogens, leading to disease. Administration of pro-
biotics can prevent the colonization of pathogens and
help restore proper microbiota by colonizing the body
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sites themselves and/or promoting the colonization of
other commensal microorganisms (Osbelt et al. 2021;
Zheng et al. 2021; Gao et al. 2021). Prebiotics may also
positively affect the integrity of the barrier by influenc-
ing the microbiota composition, significantly increas-
ing the abundance of beneficial bacteria (Mellai et al.
2024).

Microorganisms present in GI tract are responsible
for production and synthesis of various compounds,
such as serotonin, gamma-aminobutyric acid (GABA),
SCFA and vitamins (Beane et al. 2021; Socata et al.
2021; O'riordan et al. 2022). When the composition
of microbiota is altered, an imbalance described as
dysbiosis can occur. Administration of probiotics and
their ability to produce SCFA, which lower the pH in
the gut, can prevent the colonization of pathogens —
Figure 4. SCFA are also used by the colonocytes as a
source of energy (Oriordan et al. 2022). Postbiotics
and synbiotics can also help in restoring the proper mi-
crobial composition e.g. by increasing the abundance
of the Faecalibacterium, Anaerobutyricum and Lacto-
bacillales, respectively (Jung et al. 2022; Srivastava et al.
2024; Naghibi et al. 2024). The microbiota plays crucial
role in tryptophan and serotonin metabolism (Roth et
al. 2021). Use of biotics can help maintain the proper
balance, preventing dysbiosis, and when such imbal-
ances occur, probiotics can help restore the balance
(El-Sayed et al. 2021; He et al. 2022).
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Figure 4. Basic mode of action of biotics. Created in BioRender.
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The integrity of intestinal barrier is another very
important aspect, which can be positively affected by
biotics. In health, properly functioning barrier prevents
the pathogens from penetrating the intestine wall and
entering other body sites. Biotic administration, such
as synbiotics, can enhance the integrity of the barrier
by decreasing the level of pro-inflammatory biomark-
ers and increasing anti-inflammatory cytokines (Li et
al. 2023). Mucin layer present in intestines prevents the
direct contact of microorganisms with epithelial cells
(Di Tommaso et al. 2021). Lack or thinning of this lay-
er, observed in diseases e.g. inflammatory bowel dis-
ease (IBD), leads to constant stimulation of immune
system as epithelial cells are directly exposed to mi-
crobial antigens. As a result, inflammation is observed
and the integrity of the intestinal barrier is disrupted
(Aleman et al. 2023). Mucin degradation is generally
considered as a pathogenicity factor, but probiotic mi-
croorganism can use this ability to set an equilibrium
between the mucin degradation and host production
of mucin (Markowska and Kiersztan 2021). Products
of mucin degradation, such as SCFA, can be beneficial
to host. SCFA promote the tight junction formation,
directly affecting the integrity of intestinal barrier
(Hays et al. 2024). Constant immune system interac-
tions with multiple microbial antigens, due to a dis-
rupted intestinal barrier, negatively affect the host and
can lead to diseases such as leaky gut syndrome (Chae
et al. 2024). However, the interactions between the im-
mune system and microorganisms are not always unfa-
vourable. Postbiotic preparations can positively affect
the activity of immune cells, thereby boosting host im-
munity (Kato et al. 2024).

While biotics offer a wide range of health benefits,
the administration of probiotics and synbiotics can be
associated with certain risks in immunocompromised
individuals (Katkowska et al., 2021). In such popu-
lations, conditions like sepsis or endocarditis have
been reported (Rahman et al., 2023; Eze et al., 2024).
A promising alternative to mitigate these risks is the
use of postbiotics (Figure 3). Preparations containing
inanimate microorganisms, with or without their me-
tabolites, do not carry the same risk associated with
the intake of live microbes found in probiotics and
synbiotics. Nevertheless, safety considerations remain
essential, as components such as cell wall fragments
or membrane elements e.g., endotoxin A (a part of
the outer membrane in Gram-negative bacteria), may
still raise significant safety concerns (Salminen et al.,
2021; Vinderola et al., 2022). Changing the legal sta-

tus of probiotics to medicinal products could further
enhance their safety profile, as any contraindications,
supported by clinical trials, would be required to be
clearly disclosed.

3.2. Molecular pathways

As mentioned before, biotics can interact with host
in various ways. In this section, we present two ex-
amples of probiotic-host interactions, focusing on L.
rhamnosus GG and A. muciniphila MucT. The former
strain represents conventional probiotics and the latter
serves as an example of novel probiotic strain.

In a healthy gut, microorganisms rarely interact
directly with the intestinal epithelium, with Payer’s
Patches being one of the few exceptions. This is pri-
marily due to the protective mucin layer covering the
epithelial surface. L. rhamnosus GG secrets proteins
(most notably p40 and p75) that contribute to host
health, with p40 exerting a more pronounced effect.
p40 activates the epidermal growth factor receptor,
leading to reduced apoptosis and enhanced mucus
production - Figure 5A. These effects collectively
strengthen intestinal barrier integrity, which is es-
sential in maintaining homeostasis (Leser and Baker,
2024). Although indirect interactions via secreted pro-
teins are critical, direct contact also plays a role. The
expression of SpaCBA operon, encoding SpaCBA pili,
by L. rhamnosus GG facilitates adhesion to host cells,
thereby preventing pathogen adhesion through colo-
nization resistance — Figure 5A (Spacova et al., 2020).
Additionally, molecular interactions of L. rhamnosus
GG with enterocytes can inhibit the formation of re-
active oxygen species (ROS) and chloride ion excre-
tion, counteracting two key pathogenic mechanisms
of rotavirus infection (Buccigrossi et al, 2022). A.
muciniphila MucT interacts with host via Amuc_1100
pili protein, which is recognized by Toll-like recep-
tor 2 (TLR2) and lipooligosaccharide (LOS), which
engages both TLR2 and Toll-like receptor 4 (TLR4)
(Segers and de Vos, 2023; Garcia-Vello et al., 2024).
These interactions enhance the transepithelial electri-
cal resistance (TEER) and stimulate the production of
anti-inflammatory cytokines such as IL-10, improving
intestinal barrier integrity — Figure 5B (Ottman et al.,
2017). A. muciniphila MucT indirect interactions are
mediated by extracellular vesicles (EV) which also ac-
tivate TLR2 and TLR4. The heat stable nature of LOS,
EV and other components e.g. ornithine lipids, un-
derscores its potential as a postbiotic (Garcia-Vello et
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al., 2024; Ioannou et al., 2024). Another key aspect of
this Gram-negative bacterium is mucin degradation.
Through the activity of to various fucosidases and sial-
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idases, A. mucniphila effectively degrades mucin, thus
stimulating its turnover and promoting the growth of
other beneficial microorganisms (Shuoker et al., 2023).
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Figure 5. Selected molecular mechanisms by which two probiotic strains, A - Lacticaseibacillus rhamnosus GG
and B -Akkermansia muciniphila MucT, interact with host intestinal epithelium. Panel A illustrates L. rhamnosus
GG indirect interactions mediated by p40 and p75, which interact with EGFR, as well as direct interactions in-
duced by SpaCBA. Panel B illustrates A. muciniphila MucT direct and indirect interactions, the former shown as
Amuc_1100 and LOS interactions with TLR2 and TLR4, the latter as sialidases and fucosidases degrading mucin.

Legend: Amuc_1100 - A. muciniphila MucT pilus protein; LOS - lipooligosaccharide; TLR2 - Toll-like receptor
2; TLR4 - Toll-like receptor 4; p40/p75 - L. rhamnosus GG secreted proteins; EGFR - epidermal growth factor

receptor; SpaCBA - L. rhamnosus GG pilus protein.

3.3. Single vs. multiple-strain probiotics

The difference in efficacy between multiple-strain
probiotics and single-strain probiotics is not clear and
seems to depend on the given strain(s) and their es-
timated outcomes rather than a general rule (Ouwe-
hand et al. 2018). A meta-analysis conducted by Mc-
Farland shows that a two-strain probiotic containing L.
rhamnosus GG and B. lactis Bb12, was more effective
in eradicating the H. pylori than either strain alone. It
was also found that single strain probiotic, containing
L. rhamnosus GG was more effective in preventing nec-
rotizing enterocolitis (NEC) compared with multiple
strain probiotic containing the same strain. In cases of
antibiotic-associated diarrhoea (AAD), atopic derma-
titis/eczema, atopic dermatitis/allergy, upper respira-

tory tract infection (URTI), irritable bowel syndrome
(IBS), there were no significant differences between
single and multiple strain probiotics, whether the
formulations were found to be effective or ineffective
(McFarland, 2021). Another meta-analysis has shown
superior effect of multiple strain probiotics in preven-
tion of NEC (Morgan et al., 2020). Niu and Xiao’s me-
ta-analysis shows the superior effect of multiple strain
probiotics in treatment of IBS, yet there are limitations
to the study due to heterogeneity of RCTs (Niu and
Xiao, 2020).

Evaluating the efficacy of single and multiple-strain
probiotics is difficult, even when addressing the treat-
ment or prevention of a specific disease. The number
of papers that evaluate the differences between single
and multiple-strain probiotics for the same strains is
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limited. The differences in study design of RCTs (e.g.
duration of treatment, dose), considering the same
strain in different formulations, often prevent obtain-
ing valuable data (McFarland 2021). Probiotics in mul-
tiple-strain formulations can exert additive, synergistic
or antagonistic effects (Kwoji et al., 2021). Therefore,
further research is needed to evaluate the efficacy of
these formulations compared to corresponding single
strain formulations, separately for a specific disease.

3.4. Efficacy and regulatory framework of biotics

Many clinical trials demonstrate the effectiveness
of probiotics, prebiotics, synbiotics and postbiotics in
various diseases (see Table II). Such use is particularly
promising for diseases where current therapies prove
to be ineffective or require long-term treatment. Given
the critical role of the microbiota-gut-brain axis, biot-
ics hold significant potential for managing psychiatric
disorders, which are currently one of the major health
challenges facing humanity (Socata et al. 2021).

The recent recognition that inanimate microorgan-
isms can confer health benefits on the host, along with
the unified definition of postbiotics presented by ISAPP,
has facilitated studies and clinical trials for postbiotics
(Salminen et al. 2021). Srivastava et al. studied the safe-
ty and eflicacy of Bifidobacterium longum CECT 7347
as both a probiotic and postbiotic, the latter obtained
through heat-treatment of the strain. The study proved
safety and efficacy of both preparations, indicating that
Bifidobacterium longum CECT 7347, in either form, is
a good candidate for reducing the severity of IBS symp-
toms (Srivastava et al. 2024). The approach of studying
the same strain in both probiotic and postbiotic formu-
lation is uncommon and makes the study significant.
The results show that postbiotics can be as effective as
probiotics. In some aspects, postbiotics can be superior
to probiotics, including better storage and safety stan-
dards (Ma et al. 2023; da Silva Vale et al. 2023).

The legal aspect of biotics is important considering
their development and future. Regulations to classify
a given biotic as a pharmaceutical or food supplement
directly correspond to the quality of the product and its
effectiveness. Currently the terms probiotic, prebiotic
and synbiotic are overused (it is not the case for post-
biotic since the term is novel). Many products, rang-
ing from foods to personal care items, claim to contain
probiotics. However, such statements are often not ver-
ified, due to the legal characteristics of these products.
It is also important to acknowledge that the presence of

live microorganisms in the product (e.g. in yogurt) is
not enough to identify the product as a probiotic. Mi-
croorganisms present in such products must confer a
proven health benefit to be considered probiotics (Hill
etal. 2014).

The regulatory framework for probiotics is not ho-
mogenous across European Union. In Poland probiot-
ics can be considered pharmaceuticals, food supple-
ments and dietary foods for special medical purposes
(Ruszkowski et al. 2018). In Poland there are only a
few biotics registered as drugs — Table III and IV. Most
of the biotics available commercially are food supple-
ments, which do not undergo the strict regulations ap-
plied for drugs (Sionek and Kolozyn-Krajewska 2019).

In the USA, the FDA coined a new term, the live
biotherapeutic product (LBP), to regulate the field of
probiotics. The issue with this approach is that LBP can
only refer to probiotics and synbiotics, as by the defi-
nition, LBP must contain live microorganisms (FDA
2016). To address postbiotics or prebiotics in a similar
way, new term(s) must be coined, or LBP definition has
to be modified.

The legal aspect of biotics is crucial in implement-
ing safe and effective products that customers can
trust. In addition to conducting the necessary studies
to evaluate the safety and efficacy of probiotics, prebi-
otics, synbiotics, and postbiotics, it is important that
the regulatory framework and laws adapt to the latest
scientific literature, ensuring the access to high-quality
products. The unification of the terms, such as those
presented by ISAPP, should also be considered to en-
hance the customers knowledge (Liang et al. 2024).
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Table II. Examples of health benefits demonstrated by probiotics, prebiotics, synbiotics and postbiotics

in clinical trials.

Composition Classifi- | Health benefits Daily dose Reference
cation and duration
Lactiplantibacillus plantarum PS128 | Probiotic | Amelioration of symptoms in children with ASD, | 3x10'° CFU Liu et al., 2019
such as: for 28 days
- disruptive and rule breaking behaviours
- hyperactivity/impulsivity
Bifidobacterium bifidum BGN4 Probiotic | - stress alleviation 1x10° CFU Kim et al.,
Bifidobacterium longum BORI - mental flexibility 1x10° CFU 2020
- beneficial changes in microbiota for 12 weeks
Lacticaseibacillus rhamnosus LOCK | Probiotic | Significant improvement in atopic dermatitis 1x10° CFU for | Cukrowska et
0900 symptom severity 3 months al., 2021
Lacticaseibacillus rhamnosus EFOCK
0908
Lacticaseibacillus casei LOCK 0918
Bifidobacterium bifidum W23 Bi- Probiotic | Reduced risk of diarrhoea during and 7 days after | 1x10'° CFU Lukasik et al.,
fidobacterium lactis W51 Lactoba- antibiotic treatment during antibi- | 2022
cillus acidophilus W37 otic treatment
Lactobacillus acidophilus W55 + 7 days
Lacticaseibacillus paracasei W20
Lactiplantibacillus plantarum W62
Lacticaseibacillus rhamnosus W71
Ligilactobacillus salivarius W24
Bacillus subtilis BS50 Probiotic | Alleviation of gas-related gastrointestinal symp- | 2x10° CFU for | Garvey et al.,
toms 6 weeks 2022
Bagcillus subtilis MB40 Probiotic | Elimination of Staphylococcus aureus without 1x10"° CFU Piewngam et
altering the microbiota for 30 days al., 2023
Lacticaseibacillus rhamnosus CECT | Probiotic | Significant reduction in the severity of acne vul- | 1x10° CFU for | Eguren etal,,
30031, Arthrospira platensis BEA_ garis 12 weeks 2024
IDA_0074B
Escherichia coli Nissle 1917 Probiotic | Potential use of engineered E. coli Nissle 1917 1x10° CFU for | Gurbatri et al.,
in adenoma diagnosis and therapy of colorectal 14 days 2024
cancer
Saccharomyces boulardii CNCM Probiotic | In patients with SIBO, associated with dietary 500 mg for 15 | Bustos
1-745 advice: days Fernandez,
- Improved digestive symptoms Man and Lasa,
- restoration of the intestinal microbiota 2023
Streptococcus thermophilus BT01 Probiotic | Reduction of urease activity in faecal samples 1x10" aFU for | Martinovi¢ et
1 week al.,, 2023
Lactobacillus crispatus DSM32717 | Probiotic | Reduction of the signs and symptoms of bacterial | 3x10'° CFU Mindar et al.,
DSM32720, DSM32718, DSM32716 vaginosis for 3 months 2023
- significant increase in the lactobacilli counts in
the vagina
- lowered combined score of the amount of
discharge and itching/irritation in vulvovagi-
nal candidiasis
Lactobacillus acidophilus Probiotic | - positive effects on glycaemic and lipid param- | 1,75x10° CFU | Zikou et al,,
Lactiplantibacillus plantarum eters 0,5x10° CFU | 2023
Bifidobacterium lactis - improvements in measures of adiposity in 1,75x10° CFU
Saccharomyces boulardii individuals with Type 2 Diabetes 1,5x10° CFU
(LactoLevure®) for 6 months
Lacticaseibacillus rhamnosus GG Probiotic | Beneficial modulation of gut and skin microbi- 1x10"° CFU Carucci et al,,

ome

for 12 weeks

2022
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Composition Classifi- | Health benefits Daily dose Reference
cation and duration
Bifidobacterium longum CECT 7347 | Probiotic | Reducing IBS symptom severity 1x10° for 84 Srivastava et
days al.,, 2024
Opuntia ficus-indica extract (Odil- | Prebiotic | Positive modulation of gut microbiota compo- 300 mg for 8 | Mellai et al.,
ia™) sition: weeks 2024
- significant reduction in the Firmicutes to Bac-
teroidetes ratio
- significant increase in relative abundances of
beneficial bacteria
- significant reduction in pro-inflammatory
bacteria
Inulin and oligofructose Prebiotic | - significant improvement in frailty and renal 15 g for 3 Yang et al.,
function months 2024
- increases in protein levels, body fat percentage,
walking speed, grip strength
- elevation in gut probiotic count
- induced alterations in microbial metabolite
expression levels among the older population
Yeast mannan Prebiotic | - An increase in the frequency and volume of 1,1 g for 4 Tanihiro et al.,
bowel movements weeks 2024
- accelerated transition to deep sleep stage and
lengthened duration
Bifidobacterium adolescentis, Synbiotic | Alleviation of multiple symptoms of PACS 2x10" CFU for | Lau et al., 2024
Bifidobacterium bifidum, Bifidobac- 6 months*
terium longum and galactooligo-
saccharides, xylooligosaccharides,
resistant dextrin (SIM01)
Bifidobacterium lactis HNO19, Lac- | Synbiotic | Decrease in pro-inflammatory biomarkers (CRP | 1,5x10° CFU | Lietal,, 2023
ticaseibacillus rhamnosus HN0OI and IFN-y) and increased anti-inflammatory 7,5x10” CFU
and fructooligosaccharide cytokine (IL-10 and sIgA) and
500 mg for 8
weeks
Lacticaseibacillus rhamnosus Flo- Synbiotic | Significant amelioration in: 1,96x10° CFU | Skrzydlo-Ra-
raActive™ 19070-2, Lactobacillus - feeling of incomplete bowel movements domanska et
acidophilus DSMZ 32418, Bifido- - flatulence 9,80x10* CFU | al,, 2020
bacterium lactis DSMZ 32269, - pain 5,88x10° CFU
Bifidobacterium longum DSMZ - stool pressure and diarrheal stools 5,88x10* CFU
32946, Bifidobacterium bifidum
DSMZ 32403 and fructooligosac- 5,88x10° CFU
charides and
1,894 g for 8
weeks
Lactobacillus acidophilus La-14, Synbiotic | - improvement in the degree of formed stool 2,9x10" CFU | Jungetal,,
Lactiplantibacillus plantarum Lp- - decrease in faecal calprotectin level 4,7x10’ CFU | 2022
115, Bifidobacterium animalis subsp. - increase in Lactobacillales 2,4x10” CFU
lactis CBG-C10 and fructooligosac- and
charide (LactominPlus’) 1,2 gfor8
weeks
Bifidobacterium bifidum MIMBb75 | Postbi- | Alleviating IBS and its symptoms 1x10° cells Andresen,
otic for 8 weeks Gschossmann
and Layer,

2020
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Composition Classifi- | Health benefits Daily dose Reference
cation and duration
Limosilactobacillus reuteri Postbi- Improved effectiveness of Helicobacter pylori 2x10" cells Ivashkin et al.,
DSM17648 (Pylopass) otic eradication therapy in patients with functional for 28 days 2024
dyspepsia
Bifidobacterium longum CECT 7347 | Postbi- - decreased total and non-HDL cholesterol 2,5x10° cells Naghibi et
otic - significant increase in the abundance of the for 8 or 12 al., 2024; Sri-
genera Faecalibacterium and Anaerobutyricum | weeks vastava et al.,
- reduced IBS symptom severity 2024
Akkermansia muciniphila HB05 Postbi- Significant increase in muscle strength among 1x10% cells for | Kang et al.,
otic individuals aged 60 years or older 12 weeks 2024
Lacticaseibacillus paracasei Postbi- - increasing plasmacytoid dendritic cells activity | 5x10' cells for | Kato et al.,
MCC1849 otic - beneficial effects on immune cells in healthy | 4 weeks 2024
adults

Legend: ASD - autism spectrum disorder, SIBO - small intestinal bacterial overgrowth, PACS - post-acute COVID-19

syndrome, CRP - C-reactive protein, IFN-y - interferon gamma, IL-10 - interleukin-10, sIgA - secretory immunoglobu-
lin A, IBS - irritable bowel syndrome, non-HDL - non-high-density lipoprotein, CFU - colony forming unit, aFU - ac-
tive fluorescent unit, *- no data for prebiotic dose.

Table III. Orally administered probiotics and postbiotics, commercially available in Poland and registered as drugs.

Pharm

- Lactobacillus acidophilus La-5 (37,5%)

- Lactobacillus delbrueckii subsp. bulgaricus
Lb-Y27 (25%)

- Bifidobacterium animalis subsp. lactis Bb-
12 (37,5%)

Name Classifi- Content per one capsule or sachet Recommended use
cation
Lakcid Forte - Probiotic 10x10° CFU: Treatment of antibiotic-associated colitis, in-
POLPHARMA S.A. - Lacticaseibacillus rhamnosus Pen (40%) cluding pseudomembranous colitis; supportive
- Lacticaseibacillus rhamnosus E/N (40%) treatment during and after antibiotic therapy;
- Lacticaseibacillus rhamnosus Oxy (20%) prevention of traveller’s diarrhoea
Lakcid Entero - Probiotic | 250 mg (210" CFU/1 g) Treatment of acute infectious diarrhoea, diar-
POLPHARMA S.A. - Saccharomyces cerevisiae var. boulardii rhoea in IBS, AAD, recurrent Clostridium diffi-
cile diarrhoea; prevention of diarrhoea associat-
ed with enteral nutrition, traveller’s diarrhoea, as
an adjunct in treatment of H. pylori
Lacidofil - LALLE- | Probiotic | 2x10° CFU*: Treatment of recurrent pseudomembranous coli-
MAND S.AS. - Lacticaseibacillus rhamnosus R0011 tis, supportive treatment during and after antibi-
- Lactobacillus helveticus R0052 otic therapy; prevention of traveller’s diarrhoea
Enetrol - BIOCO- Probiotic | 250 mg: Treatment of acute infectious diarrhoea, recur-
DEX - Saccharomyces boulardii CNCM 1-745 rent Clostridium difficile diarrhoea; prevention
of diarrhoea associated with enteral nutrition,
traveller’s diarrhoea; as an adjunct in treatment
in IBS diarrhoea
Lacteol Fort 340 Postbiotic | 340 mg including: Supportive treatment of diarrhoea
mg - DSM-Firmen- - Inactivated Limosilactobacillus fermentum
ich Houdan SAS and Lactobacillus delbrueckii — 10x10° CFU
- Fermented medium - 160 mg
Trilac - Krotex Probiotic 1,6x10° CFU: Treatment of antibiotic-associated colitis, includ-

ing pseudomembranous colitis; prevention of
traveller’s diarrhoea; supportive treatment after
antibiotic therapy

Legend: AAD - antibiotic-associated diarrhoea; CFU - colony forming unit; IBS - irritable bowel syndrome; * -

ratio for each strain has not been declared.
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Table I'V. Non-orally administered probiotics registered as drugs in Poland.

Name Classification | Content per one capsule Recommended use
Lakcid Intima - POLPHAR- Probiotic - Lactobacillus gasseri DSM 14869 >10° Preventive use to maintain or
MAS.A. CFU restore normal vaginal microbiota
- Lacticaseibacillus rhamnosus DSM 14870
>10® CFU
Lactovaginal - BIOMED S.A. | Probiotic - Lacticaseibacillus rhamnosus 573 210° Preventive use; treatment of vag-
CFU inal discharge and inflammation
of reproductive organs after the
antibacterial, antitrichomonal, or
antifungal treatment
inVag - BIOMED S.A. Probiotic >10° CFU: Prevention of genitourinary in-
- Limosilactobacillus fermentum 57A (25%) | fections; supportive treatment in
- Lactiplantibacillus plantarum 57B (25%) vaginitis, during and after antibiot-
- Lactobacillus gasseri 57C (50%) ic and/or antifungal treatment
Protrivagin — Verco S.A. Probiotic - Lactiplantibacillus plantarum P 17630 10° | Normalization of the disrupted
CFU vaginal microbiota after antibiotic
therapy for bacterial vaginosis;
maintaining normal vaginal mi-
crobiota in recurrent infections

Legend: CFU - colony forming unit.

4. Future perspectives

Biotics present great potential in treatment and
prevention of multiple diseases. As mentioned in the
previous paragraph, the regulatory framework can be
a limiting factor for implementing novel therapeutics.
Therefore, the future of biotics greatly depends on le-
gal aspects (Cordaillat-Simmons et al. 2020; Liang et
al. 2024).

Some authors point out that individual differenc-
es in microbiota make the use of formulations with
invariable composition unjustified (Lee et al. 2021).
This has led to the idea of using personalized therapies.
Such personalization could be achieved based on the
presence of the characteristic microbiota. In 2011 the
idea of enterotypes was proposed (Arumugam et al.
2011). The study distinguished three enterotypes based
on specific relation of the present taxa. Since then, the
idea of enterotypes has been studied. Multiple authors
proposed a new insight on the topic, considering new
classification, the influence of enterotypes on nutrition
and probiotic intake (Costea et al. 2017; Liang et al.
2017; Chen et al. 2017; Song et al. 2020; Lee et al. 2021;
Cerdo et al. 2022; Yuan et al. 2022) Although the idea
of enterotypes is well established in the literature, novel
reports show no basis for identifying such groups, thus

suggesting the absence of enterotypes in the human gut
(Bulygin et al. 2023).

While the idea of enterotypes evolved and number
of distinguished enterotypes has changed, the approach
to question their existence in general, as presented by
Bulygin et al., is novel and groundbreaking (Gorvi-
tovskaia et al. 2016; Mobeen et al. 2018; Jiao et al. 2022;
Bulygin et al. 2023). To the best of authors knowledge,
the cited article is the only one that states the absence
of enterotypes and supports this claim with data (Buly-
gin et al. 2023). The idea of enterotypes, understood as
discrete clusters, was challenged earlier by Cheng and
Ning, who proposed a more continuous understanding
of the term (Cheng and Ning 2019).

Such cutting-edge approach, denying the existence
of enterotypes, may be controversial given the fact that
the idea of enterotype has been well established in the
literature. Many clinical trials proved the corelation
between the enterotypes and health (Christensen et al.
2020; Vallet et al. 2023; Jamieson et al. 2024).

As our understating of human microbiota con-
stantly evolves, the idea of personalized therapies can
be promising, even if enterotypes will be abandoned
in their present understanding (Abouelela and Helmy
2024). Tools such as next-generation sequencing and
machine learning help isolate potentially beneficial
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microorganisms, by some classified as NGP, and at the
same time provide more data for better understand-
ing of the microbiota relations (Chollet et al. 2024;
Hasnain et al. 2024). The field of biotics would greatly
benefit from the unification of nomenclature, a prob-
lem this article directly addresses. The wide variety
of terms used, often synonymous, hinders the under-
standing of the subject by stakeholders (Salminen et al.
2021). Biotics are promising in the treatment of vari-
ous diseases, including civilization diseases, positive-
ly affecting general health, preventing colonization of
the pathogens and dysbiosis (see Table II) (Logan and
Katzman 2005; Maldonado Galdeano et al. 2019; Os-
belt et al. 2021; Caballero-Flores et al. 2023).

Further research could focus on postbiotic inacti-
vation methods. As shown, inanimate microorganisms
and their metabolites exhibit great potential, which is
often limited by the lack of efficient inactivation tech-
niques, capable of preserving bioactive properties,
while remaining cost-effective and scalable. Addition-
ally, omics-driven approaches may be employed to
identify novel probiotic candidates and to investigate
the characteristics and potential applications of already
selected strains. Characterization of individual micro-
biome using next-generation sequencing (NGS) can
enable the development of personalized therapies. As
shown, microorganism derived products such as se-
creted proteins can exert therapeutic effect. Studying
the proteomics on both host and microbial level along
with their interactions, may deepen our understanding
of host-microbiome relationship, supporting the de-
velopment of novel biotics. Evaluating the efficacy of
biotics, such as differences between single- and multi-
strain probiotics, safety considerations, and the regu-
latory framework, remains a critical area of research.
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Abstract: Octenidine dihydrochloride (OCT) is an antiseptic used for the prevention of wound infections, treatment of wounds and for
treating oral infections. The spectrum of OCT’s activity includes Gram-positive and Gram-negative bacteria, as well as fungi, including
multidrug-resistant (MDR) strains. For most species, it exhibits activity at concentrations ranging from approximately 1 to several pg/
mL. OCT also exhibits strong antibiofilm activity, both against biofilm formation and mature biofilms. The compound has limited viru-
cidal and antiparasitic activity. The Clinical Efficiency of MIC (CEMIC) index for most pathogens is classified as excellent, meaning that
the MIC is much lower than the clinical concentration. The required contact time for OCT microbicidal action is fast, at just 1 minute.
The possibility of adaptation to OCT has been described; however, the Karpinski Adaptation Index (KAI) for most species is below 0.2,
indicating a very low or low risk of developing clinical resistance. Only in some isolates of Proteus mirabilis and Pseudomonas aeru-
ginosa the risk of resistance development considered moderate. According to guidelines (Statement of the Polish Wound Management
Association, German Consensus on Wound Antisepsis, and International Consensus Document “Use of wound antiseptics in practice”),
OCT is the first-choice antiseptic for critically colonized wounds, infection-prone wounds, burns, wounds colonized by multidrug-resis-
tant (MDR) pathogens or infected wounds, and for the prevention of surgical site infections (SSI). OCT is also used in umbilical stump
care, the treatment of oral infections, skin and mucosal candidiasis, and bacterial vaginosis.

1. Introduction. 2. Mode of action, 3. Antimicrobial activity, 4. Antibiofilm activity, 5. Bactericidal time, 6. Adaptation to OCT, 7. Pre-
cautions and application of OCT.

Keywords: anti-infective agents; antimicrobial stewardship; biofilm; nosocomial infection; wound infection; wound healing;

1. Introduction preserved, and antiseptics should be used for wound

prevention and treatment. Antiseptics are antimicro-

A growing concern is the increasing number of
individuals with wounds. It is estimated that approx-
imately 1-2% of people worldwide experience chronic
wounds (Sharma et al. 2024). An additional threat is
the rise of multidrug-resistant (MDR) bacterial and
fungal strains, leading to therapeutic failure and be-
coming a serious crisis (Bharadwaj et al. 2022; Bono-
mo et al. 2024). According to the latest guidelines (Nair
et al. 2023; Sopata et al. 2023) antibiotics should be

bial agents that act at various levels: on the wound sur-
face, in exudate, within the dressing structure, and in
tissues. One such antiseptic is octenidine.

Octenidine dihydrochloride (OCT) is a cationic
compound, stable within a pH range of 1.6-12.2 (Hiib-
ner et al. 2010). It has PubChem CID 51167, its mo-
lecular weight is 623.8 g/mol, and molecular formula
Cs6HsCLN4 (PubChem). It exhibits strong antimicro-
bial activity, including effectiveness against Gram-pos-
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itive and Gram-negative bacteria, fungi, some viruses,
and protozoa, while maintaining low cytotoxicity. OCT
was introduced into medical practice over 25 years ago
and is currently used in washing lotions, mouth rinses,
oral tablets, and skin disinfectants.

2. Mode of action

OCT interacts with bacterial polysaccharides and
enzymatic systems, leading to cytoplasmic leakage
and disruption of essential cellular functions (Hiib-
ner et al. 2010). Unlike antibiotics that target specific
cellular components, OCT exerts its antimicrobial ef-
fect by destabilizing the cell structure, compromising
membrane integrity, disrupting the lipid bilayer, and
increasing membrane permeability (Vejzovic et al.
2022). Additionally, it neutralizes the bacterial surface
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charge, causing the outer membrane to rupture and
the cell wall to degrade. Once inside the periplasmic
space, OCT reaches the inner membrane, where it in-
duces lipid disruption, leading to depolarization and
changes in membrane fluidity (Figure 1) (Malanovic
et al. 2020). In Candida species, OCT has been shown
to inhibit filamentation by interfering with ergoster-
ol biosynthesis and compromising membrane integ-
rity (Fang et al. 2023). Since its mechanism of action
does not rely on lipid specificity, it is effective against
a broad range of bacteria and fungi, including MDR
strains (Malanovic et al. 2022). Due to its nonspecific
mode of action, which involves membrane disruption,
the likelihood of resistance development is considered
minimal, and no cases of OCT resistance have been re-
ported in clinical practice (Malanovic et al. 2020).

Figure 1. Mode of action of octenidine dihydrochloride. Created using the BioRender.com.
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3. Antimicrobial activity

OCT exhibits a strong antibacterial effect (Ko-
burger et al. 2010; Dydak et al. 2021; Krasowski et al.
2021; Loose et al. 2021; Denkel et al. 2022; da Silva et
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al. 2023). However, it has no effect on bacterial spores
(Bigliardi et al. 2017). The minimal inhibitory con-
centrations (MIC) for most tested bacteria range from
below 1 pg/mL to approximately 10 pg/mL (Table 1).
However, for single strains of Streptococcus pneumoni-
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ae and Pseudomonas aeruginosa, the maximum MIC
values are significantly higher, at 32 ug/mL and 80 pg/
mL, respectively. Fungi show similar susceptibility to
OCT, with MIC values ranging from approximately 0.5
to 4 ug/mL. These MIC levels indicate that the anti-
septic is effective at similar concentrations across dif-
ferent species. Comparable inhibitory concentrations
of OCT have also been observed in MDR strains such
as New Delhi metallo-B-lactamase-positive (NDM)
Enterobacter cloacae, Klebsiella pneumoniae NDM, and
Candida auris (Karpinski et al. 2025a). Additionally,
for all MIC results, the Clinical Efficiency of MIC (CE-
MIC) index was analyzed, which represents the ratio

of MIC values to clinical concentrations (Karpinski, et
al. 2025b). The lowest clinical concentration of OCT
used is 500 ug/mL. CEMIC is classified as excellent for
values < 0.1, moderate for values between 0.1 and 0.9,
and poor for values > 0.9 (Karpinski, et al. 2025b). For
most species listed in Table 1, CEMIC was classified
as excellent, meaning the MIC is much lower than the
clinical concentration. This is particularly important
for antiseptics, which, for example, may become dilut-
ed in wounds due to exudate or blood. In the case of
OCT, even significant dilution within the wound does
not reduce its activity. However, for some P. aeruginosa
strains, CEMIC was classified as moderate.

Table 1. Minimal inhibitory concentrations (MIC) of octenidine against bacteria
and fungi using microdilution method.

. X Range of MICs | Methodological remarks (medium type, colo-
Microorganisms . L. References
(ug/mL) ny counts, incubation time, and temperature)
Gram-positive bacteria
Clostridium perfringens 1 MHB, 10° cfu/mL, 24-48 h, 36°C (Koburger et al. 2010)
4 MHB, 10° cfu/mL, 24-48 h, 36°C (Koburger et al. 2010)
Enterococcus faecalis
3.125-6.25 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
0.49-1.95 TSB, 10° cfu/mL, 24 h, 37°C (Dydak et al. 2021)
E. faecium
3.125-6.25 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
E. hirae 0.6-10 TSB, 10%-10° cfu/mL, 24-72 h, no data (Schug et al. 2022)
2 MHB, 10° cfu/mL, 24-48 h, 36°C (Koburger et al. 2010)
0.49-0.98 TSB, 10° cfu/mL, 24 h, 37°C (Dydak et al. 2021)
2-4 SCS, 1.5-5x10°cfu/mL, 48 h, 37°C (Denkel et al. 2022)
Staphylococcus aureus
0.9 MHB, 10° cfu/mL, 24 h, 37°C (Krasowski et al. 2021)
0.3-5 TSB, 10%-10° cfu/mL, 24-72 h, no data (Schug et al. 2022)
3.125-6.25 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
Methicillin-resistant S. 1 MHB, 10° cfu/mL, 24-48 h, 36°C (Koburger et al. 2010)
aureus (MRSA) 14 MHB, 5x10° cfu/mL, 24-48 h, 37°C (Dittmann et al. 2019)
S. epidermidis 0.49-7.8 TSB, 10° cfu/mL, 24 h, 37°C (Dydak et al. 2021)
Coagulase-negative
) 2-4 SCS, 1.5-5x10° cfu/mL, 48 h, 37°C (Denkel et al. 2022)
staphylococci
Streptococcus
i 8-32 MHB, 10° cfu/mL, 24-48 h, 36°C (Koburger et al. 2010)
preumoniae
S. pyogenes 3.125-6.25 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
Gram-negative bacteria
Acinetobacter baumannii 0.25-3.9 TSB, 10° cfu/mL, 24 h, 37°C (Dydak et al. 2021)
3.9 TSB, 10° cfu/mL, 24 h, 37°C (Dydak et al. 2021)
Enterobacter cloacae
6.25 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
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2 MHB, 10° cfu/mL, 24-48 h, 36°C (Koburger et al. 2010)
1.95-3.9 TSB, 10° cfu/mL, 24 h, 37°C (Dydak et al. 2021)
2-4 SCS, 1.5-5x10°cfu/mL, 48 h, 37°C (Denkel et al. 2022)
Escherichia coli 1.95-3.9 MFHB or artificial urine, 10°10° cfu/mL, 20 £ 2 (Loose et al. 2021)
h, 37°C
1-4 MHB, 10° cfu/mL, 20 + 2 h, 37°C (da Silva et al. 2023)
0.6-20 TSB, 10%-10° cfu/mL, 24-72 h, no data (Schug et al. 2022)
3.125-6.25 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
Haemophilus influenzae 1 MHB 10° cfu/mL, 24-48 h, 36°C (Koburger et al. 2010)
Klebsiella spp. 2-4 SCS, 1.5-5x10° cfu/mL, 48 h, 37°C (Denkel et al. 2022)
K. preumoniac 1.95-7.8 TSB, 10° cfu/mL, 24 h, 37°C (Dydak et al. 2021)
3.125-6.25 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
MHB or artificial urine, 10°-10° cfu/mL, 20 + 2
Proteus mirabilis 1.95-3.9 h, 370C (Loose et al. 2021)
3.125-6.25 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
2-8 MHB, 10° cfu/mL, 24-48 h, 36°C (Koburger et al. 2010)
3.9-15.7 TSB, 10° cfu/mL, 24 h, 37°C (Dydak et al. 2021)
8-32 SCS, 1.5-5x10° cfu/mL, 48 h, 37°C (Denkel et al. 2022)
2.25+0.95 MHB, 10° cfu/mL, 24 h, 37°C (Krasowski et al. 2021)
Pseudomonas aeruginosa MHB or artificial urine, 10°-10° cfu/mL, 20 + 2
3.9-7.8 h, 37°C (Loose et al. 2021)
3.91-15.63 TSB, 10° cfu/mL, 24 h, 36°C (Karpinski, et al. 2025b)
1.25-80 TSB, 10%-10° cfu/mL, 24-72 h, no data (Schug et al. 2022)
3.125-12.5 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
Salmonella enterica 6.25 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
Shigella flexneri 6.25-12.5 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
Yersinia enterocolitica 6.25 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
Fungi
Ascophera apis 0.78-3.125 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
1 MHB, 10° cfu/mL, 24-48 h, 36°C (Koburger et al. 2010)
0.49-0.98 TSB, 10° cfu/mL, 24 h, 37°C (Dydak et al. 2021)
0.45 RPMI with 2% glucose, 10° cfu/mL, 24 h, 37°C (Krasowski et al. 2021)
Candida albicans 0.5+ 0.25 and (Korbecka-Paczkowska and
0.9+04 TSB, 10° cfu/mL, 24 b, 36°C Karpiriski 2024)
1.95-3.91 Sabouraud broth, 10° cfu/mL, 24 h, 36°C (Karpinski et al. 2024)
0.78-1.56 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
C. auris 3.125 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
C. glabrata 0.78-3.125 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
C. tropicalis 0.78-1.56 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
Cryptococcus neoformans 3.125 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)
Rhodotorula mucilaginosa 3.125 TSB, 10° cfu/mL, 24-48 h, 37°C (Karpinski, et al. 2025a)

Abbreviations: MHB - Mueller—Hinton broth, TSB - Tryptic soy broth, SCS - Soybean casein solution, RPMI — Roswell Park Memorial

Institute medium
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OCT has limited virucidal activity, and the number
of studies on this topic is scarce (Bigliardi et al. 2017).
One of the studies reported that 0.1% concentration
may be effective against coliphages f2 and MS2, as
well as hepatitis B and herpes simplex viruses, but not
against phages PhiX174 and adenoviruses (Hiibner et
al. 2010). The authors suggest that OCT exhibits viru-
cidal activity only against enveloped viruses. However,
there is a lack of recent studies confirming this effect.

The COVID-19 pandemic prompted several stud-
ies on the effect of OCT against SARS-CoV-2. In one
study, using EN 14476 guidelines, a significant viral ti-
tre reduction was observed after 15 seconds of contact
(Steinhauer et al. 2021). Another study showed that
rinsing the mouth with OCT for one minute reduced
SARS-CoV-2 RNA in saliva to undetectable levels by
RT-qPCR (Smeets et al. 2022). However, both studies
used Octenisept, which contains 0.1% OCT and 2%
phenoxyethanol (PE). Since PE also has antimicrobial
properties, it is difficult to attribute the antiviral effect
solely to OCT. This is supported by a study where a
product with 0.05% OCT but no PE showed weak ac-
tivity against SARS-CoV-2 (Meister et al. 2020).

The antiparasitic effect of OCT has been described
in relation to Trichomonas vaginalis. A combination
of 0.1% OCT and 2% PE, demonstrated 50% effective
concentration (EC50) values after 5 minutes of expo-
sure at concentrations ranging from 5.7 to 21.4 pug/mL,
and after 30 minutes at concentrations of 0.68 to 2.1
pg/mL (Kiing et al. 2016). However, as with viruses, it
remains unclear whether the anti- Trichomonas activity
is primarily due to OCT, PE, or a combination of both.
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4. Antibiofilm activity

OCT exhibits strong antibiofilm activity, both
against biofilm formation and mature biofilm. Most
studies show that complete biofilm reduction occurs
within 24 hours, regardless of the microbial species
(Rembe et al. 2020; Dydak et al. 2021; Krasowski et al.
2021; Loose et al. 2021). Only one publication showed
that OCT requires up to 3 days for biofilm formation
inhibition of E. coli (Loose et al. 2021). Table 2 demon-
strates that the OCT concentrations required for an-
tibiofilm activity are lower for Gram-positive bacteria
than for Gram-negative bacteria. In the case of C. albi-
cans, the data are inconclusive. There are publications
describing the effect of OCT on bacterial viability in
biofilms and biofilm reduction. Unfortunately, these
data are very diverse. In some studies, OCT destroys
100% of the biofilm already at concentrations <100 pg/
mL (Dydak et al. 2021; Krasowski et al. 2021), while in
others, even a concentration of 1000 pug/mL does not
destroy the entire biofilm (Davis et al. 2017; Rembe et
al. 2020; Korbecka-Paczkowska and Karpinski 2024). It
was also confirmed that OCT leads to the destruction
of MRSA biofilm structure in vivo in mice (Huang et
al. 2021). However, there is a lack of studies investi-
gating its effect on the biofilm matrix in a short time.
This would be important due to the short, usually only
a few minutes long, application of OCT-containing
products, such as oral mouthwashes or wound liquids.

Table 2. Antibiofilm activity of octenidine dihydrochloride.

Tested
. X . Time of % of biofilm Type of antibiofilm
Microorganism concentrations . . Reference
action reduction study
(ng/mL)
E. faecium 15.7-31.3 24h 100 (Dydak et al. 2021)
S. epidermidis 15.7-125 24h 100 (Dydak et al. 2021)
62.5 24 h 100 (Dydak et al. 2021)
mature biofilm
S. aureus ~50 24 h 100 . (Krasowski et al. 2021)
reduction
1000 24 h ~85% (Rembe et al. 2020)
MRSA 1000 3 days 80% (Davis et al. 2017)
A. baumannii 7.8-250 24h 100 (Dydak et al. 2021)
biofilm formation
250 3 days 100 o (Loose et al. 2021)
E. coli inhibition
125-500 24 h 100 (Dydak et al. 2021)
mature biofilm re-
E. cloacae 250-500 24 h 100 . (Dydak et al. 2021)
duction
K. pneumoniae 62.5-500 24h 100 (Dydak et al. 2021)
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P. mirabilis 250 24 h 100 biofilm formation (Loose et al. 2021)
500 24h 100 inhibition (Loose et al. 2021)
» . 250 to >500 24h 100 (Dydak et al. 2021)
> aeruginosa
~180 24 h 100 (Krasowski et al. 2021)
1000 24 h ~100 (Rembe et al. 2020)
i (Korbecka-Paczkowska and
500 24 h 47 +11 mature biofilm re- o
. Karpinski 2024)
duction
C albi 1000 24k S1413 (Korbecka-Paczkowska and
- abieans - Karpiniski 2024)
15.7-31.3 24 h 100 (Dydak et al. 2021)
~60 24 h 100 (Krasowski et al. 2021)

5. Bactericidal time

According to the European Standard EN 1040:2005,
an effective antiseptic should achieve a 5-log as below
reduction of a given bacteria (European Standard EN
1040:2005). This corresponds to a 99.999% reduction
in pathogen count. Studies indicate that pure OCT at
a concentration of 500 pg/mL reduced the planktonic
form of P. aeruginosa by over 5-log within 1 minute
(Karpinski, et al. 2025b). In other studies, a significant
reduction of C. albicans, S. aureus, and P. aeruginosa
also required a contact time of 1 minute and OCT con-
centrations ranging from 10 to 50 pg/mL (Koburger et
al. 2010). This contact time is shorter for the OCT/PE
combination, e.g. for Octenisept with 1000 ug/mL of
OCT. The contact time required for total inhibition of
S. aureus, E. faecalis, and C. albicans is only 15 seconds,
for this product. For a 50% solution, the contact time
for E. faecalis and C. albicans increased to 3 minutes
(Tirali et al. 2009). OCT/PE achieves a 5 log;o CFU/
mL reduction within 1 minute against P. aeruginosa
and S. aureus under standard conditions (EN 13727),
in the presence of wound exudate, as well as in a mod-
ified peptide challenge test (Severing et al. 2022). Stud-
ies conducted in accordance with EN 13727:2012+A1
demonstrated that OCT at a concentration of 100 pg/
mL achieves a reduction of >5 log;, within 1 minute
for isolates of A. baumannii, E. cloacae, E. coli, K. pneu-
moniae, and P. aeruginosa. This activity was observed
in three types of media: without organic load, with
albumin, and with albumin and erythrocytes (Alva-
rez-Marin et al. 2017). Some papers indicate that OCT
may be less effective in the presence of organic material
(Schedler et al. 2017; Barreto et al. 2020). Schedler et al.
(2017) showed that, for 1000 pg/mL OCT, the time re-
quired for reduction of microorganisms by >5 log, in

the presence of organic soil can lasts from 3 h to 24 h.

Contact time in biofilm conditions needs to be
extended. After 30 minutes of 500 ug/mL OCT expo-
sure, 66.6% of C. albicans cells within the biofilm re-
main viable, while complete eradication occurs only
after 1 hour. For S. aureus and P. aeruginosa, 66.6%
of bacteria remain viable after 15 minutes, 55.5% af-
ter 30 minutes, and complete killing is achieved after
24 hours (Krasowski et al. 2021). In other studies, the
OCT/PE combination eradicated bacterial viability in
mature P, aeruginosa biofilm by 46% within 15 minutes
and 100% within 30 minutes, while S. aureus was com-
pletely eradicated within 1 minute (Junka et al. 2014).
The faster action may be associated with the additional
presence of PE.

6. Adaptation to OCT

Adaptation to antiseptics is a process in which bac-
teria and/or fungi gradually increase their tolerance to
a given antiseptic after repeated or prolonged exposure
(Verspecht et al. 2019). This adaptation often leads to
the ability of microorganisms to grow at increasing
concentrations of antiseptics. In contrast to classical
antibiotic resistance, adaptation to antiseptics usually
does not result from the acquisition of resistance genes
but rather from mechanisms such as biofilm forma-
tion, metabolic changes and growth retardation, alter-
ations in cell membrane structure, and active removal
of the antiseptic from the cell via efflux pumps (Ver-
specht et al. 2019; Wand et al. 2019; Bock et al. 2021).
Wand et al. (Wand et al. 2019) described the efflux
pump SmvA and membrane remodeling as responsi-
ble for OCT tolerance in K. pneumoniae. Additionally,
it was observed that adaptation to chlorhexidine may
lead to decreased susceptibility to other cationic bio-
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cides, including OCT. Tolerance associated with the
efflux pump has been linked to mutations in phospha-
tidylserine synthase pssA and phosphatidylglycerol-
phosphate synthase pgsA (Bock et al. 2021). In another
study, opposite conclusions were drawn, demonstrat-
ing that Gram-positive bacteria carrying genes encod-
ing efflux pumps contribute to antimicrobial resistance
but do not affect sensitivity to low concentrations of
OCT (Conceigao et al. 2019). The results of studies on
adaptation to OCT are varied. Table 3 shows that some
studies found no development or only low tolerance to
OCT in strains such as S. aureus, S. epidermidis, Cit-
robacter spp., and Enterobacter spp. (Nicolae Dopcea
et al. 2020; Garratt et al. 2021; Karpinski 2024). How-
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ever, other publications confirmed the development of
adaptation to OCT, particularly in P. mirabilis and P,
aeruginosa (Shepherd et al. 2018; Garratt et al. 2021;
Pelling et al. 2024). The Karpinski Adaptation Index
(KAI) is used in studies to assess the potential risk of
developing resistance to antiseptics (Karpinski 2024).
For most strains listed in Table 3, the KAI is below 0.2,
indicating that the level of adaptation is significantly
lower than the clinical concentration. Therefore, these
strains have a very low or low risk of developing clini-
cal resistance to OCT. Only in some isolates of P. mira-
bilis and P. aeruginosa does the risk of resistance devel-
opment increase to a moderate level (Table 3).

Table 3. Results of studies on the development of microorganism adaptation to OCT.

Microorganism | Initial MIC | MIC after | Fold increase Reference Karpinski Risk of clini-
(before adapta- in adaptation Adaptation cal resistance
adaptation) | tion relative to Index (KAI) to OCT
(ug/mL) (ug/mL) initial MIC

S. aureus 2 4.5 x 2.25 (Karpinski 2024) 0.009 Very low

S. epidermidis 0.2 0.49 x 2.45 (Nicolae Dopcea et al. 2020) 0.00098 Very low

Citrobacter spp. | 2 2 x 1 (Garratt et al. 2021) 0.004 Very low

Enterobacter 4 4-8 x1-2 (Garratt et al. 2021) 0.008-0.016 Very low

spp.

P. mirabilis 2 128 X 64 (Pelling et al. 2024) 0.256 Moderate
8 16 X 2 (Tagliaferri et al. 2024) 0.032 Very low

P. aeruginosa 7.8-15.6 50-75 x 3.2-12.8 (Karpinski, et al. 2025b) 0.12 Low
4 32-64 x 8-16 (Garratt et al. 2021) 0.064-0.128 Very low/Low
32 256 x 8 (Tagliaferri et al. 2024) 0.512 Moderate
4-8 32-128 x 4-32 (Shepherd et al. 2018) 0.064-0.256 Very low/

Moderate

C. albicans 1.95-3.9 7.5-10 x 1.9-5.1 (Karpinski et al. 2024) 0.019 Very low

Interpretation of the Karpinski Adaptation Index: KAI < 0.1: very low risk of clinical resistance; 0.1 < KAI < 0.2: low risk of clinical
resistance; 0.2 < KAI < 0.8: moderate risk of clinical resistance; 0.8 < KAI < 1.0: high risk of clinical resistance; KAI > 1.0: very high

risk of clinical resistance (Karpinski 2024).

7. Precautions and application of OCT

OCT meets the criteria for selecting antimicrobial
products in the wound healing process, namely:

« it has broad-spectrum antimicrobial effectiveness
and a fast action time,

« it has the ability to destroy biofilm,

« it has tissue tolerance, lacks cytotoxicity and car-
cinogenicity,

o it can be combined with surfactants and special-
ized dressings,

« it does not lead to the development of resistance,

o it is not inactivated by protein loads and pH
changes (Kramer et al. 2018).

OCT-based products are recommended for wound
prevention and treatment. Combinations such as 0.1%
OCT + 2% PE or 0.05% OCT + ethylhexylglycerin are
approved. Contraindications for using OCT products
include: peritoneal lavage, fistulas, and other structures
from which the applied substance cannot be thorough-
ly rinsed; use in the extraperitoneal space; use on hy-
aline cartilage and central nervous system structures;
and allergy. OCT rarely causes side effects. Document-
ed effects include blistering, necrosis, and scarring in
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newborns (Biermann et al. 2016), contact dermatitis,
and swelling (Calow et al. 2009; Biermann et al. 2016).
The use of OCT without drainage may lead to per-
sistent edematous changes, inflammatory reactions,
and necrosis (Eigner et al. 2023).

According to the International Consensus Doc-
ument “Use of Wound Antiseptics in Practice” from
2023 (Nair et al. 2023), guidelines of Polish Wound
Management Association (Sopata et al. 2023) and the
German Consensus on Wound Antisepsis (Kramer et
al. 2018), OCT is the first-choice antiseptic for critical-
ly colonized wounds, infection-prone wounds, burns,
wounds colonized by MDR pathogens or infected
wounds, and for surgical site infections (SSI) preven-
tion. OCT is also used in umbilical stump care (Mi-
véek et al. 2017), treatment of skin and mucosal fungal
infections (Novakov Miki¢ and Stojic 2015) and bac-
terial vaginosis (Swidsinski et al. 2015). OCT inhibits
dental plaque formation and is used in treating oral
inflammation and periodontitis. Thus, it is an effective
alternative to chlorhexidine and other contemporary
mouthwashes (Grover et al. 2021; Rath et al. 2024).
However, all antiseptics, like antibiotics, particularly
when used for long periods, may lead to oral and intes-
tinal dysbiosis (Amaral et al. 2023; Brookes et al. 2023;
Contaldo et al. 2023). It is important for future studies
to investigate the long-term influence of antiseptics,
including OCT on host microbiota and its implications
for antimicrobial stewardship.
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