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1. Introduction

1.1. Candida as a commensal and as a pathogen

Candida albicans is a diploid microorganism belong-
ing to genus Candida of ascomycetous-like fungal species 
which has no known teleomorph [1]. Candida albicans 
is an ubiquitous human commensal yeast which resides 
mainly on mucosal surfaces of the oral cavity as well as 
in the urogenital, gastrointestinal and vaginal tracts and 
some cutaneous areas of healthy individuals without 
symptoms of disease [5, 53]. !e latter strain in commen-
sal form can be detected in approximately 50% of the 
human population [75]. Furthermore, in all body loca-
tions, C. albicans represented the predominant Candida 
species (70%). On the other hand, results of previous 

studies established association between fungal colonisa-
tion and candidaemia, and furthermore the rate of pro-
gression from colonisation to invasive infection ranges 
from 15 to 40% [79]. Candida albicans is considered 
to be a major causative factor of opportunistic human 
infections (invasive candidiasis) with high morbidity 
and mortality rate of 30 to 70% [5, 9–11, 13–15, 53, 96].

!e status of the host immune system is the major 
factor balancing the transition of C. albicans from 
a commensal to a pathogen [84]. Much has been done to 
elucidate the host defence mechanisms against systemic 
candidiasis [30, 37, 68]. Moreover, many of the previ-
ous studies showed that C. albicans aspartic proteinases 
are immunogenic and elicit mucosal and systemic anti-
body responses [7, 44, 53, 55, 92, 99]. Recently, it was 
reviewed [37] that transition from healthy to pathogenic 
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state occurs at the mucosal-fungal interface. Mucosal 
immune mechanisms are vital to prevent the systemic 
spread of pathogens from localized infection. !e 
innate and adaptive arms of the immune response play 
key role in immunity to Candida. Several studies have 
demonstrated that innate immunity in mucosal infec-
tion involves many cell types: neutrophils, monocytes/ 
macrophages, Natural Killer (NK) cells, dendritic cells 
(DC), CD4+ and CD8+ T  cells, non-MHC restricted 
T cells such as γδ-T cells, mucosal epithelial cells, stro-
mal cells and keratinocytes [30, 37, 68]. In the case of 
systemic infection, the release of interferon-γ (INF-γ) 
and lymphotoxin-α (LTA) from !1 cells is responsible 
for activation of the antifungal properties of neutrophils 
and macrophages in the deep tissues. Investigation in 
mice and humans has provided evidence for a protec-
tive role of the !17 pathway in anti-fungal immunity 
at mucosal and epithelial surfaces, particularly the oral 
cavity and skin. During infection of mucosa, the release 
of IL-17 and IL-22 from specific !17 lymphocytes 
recruits and activates neutrophiles for the elimination of 
infection [37, 49, 50, 52]. Moreover, commensal Vora in 
the oral, gastrointestinal and vaginal tracts plays a vital 
role in limiting infections [46]. Candida albicans has 
three major mechanisms of its own that mediate patho-
genicity and invasiveness: (I) escape from host immune 
responses, (II) morphogenic change from the yeast to 
the hyphal form, which increases adherence and ability 
to invade host cells, and (III) host cell invasion, which 
is supported by factors associated with hyphae includ-
ing adhesion molecules, invasion-like molecules, and 
secreted hydrolytic enzymes [53]. 

!e incidence of Candida endogenous infections 
appeared to be due to several predisposing factors such 
as immunosuppressant or steroids treatments, long-
term catheterization, abdominal surgery, treatment with 
broad-spectrum antibiotics, perforation of the gastro-
intestinal tract, destruction of the skin by deep burns, 
hyperalimentation, mechanical ventilation, renal fail-
ure, bone marrow transplant, premature very low birth 
weight infants, critically ill neonates, diabetes mellitus, 
Crohn’s disease, immunologically comprised individu-
als, spread of HIV infections [16–19, 21, 23, 45, 79, 83]. 
However, rare cases of exogenous acquisition have also 
been reported, they occurred due to contaminated solu-
tions and material (catheter-related), also via healthcare-
associated cross-transmission of C. albicans [6, 71].

1.2. Candidiasis

Candidiasis may be classified as superficially-local-
ized or a systemic [5, 20, 22, 24, 25, 27]. !e surface-
localized, mucocutaneous candidiasis can a<ect epider-
mal and mucosal surface including oral cavity, pharynx, 
esophagus, intestines, urinary bladder and vagina. It 

occurs in the form of oropharyngeal candidiasis (OPC), 
cutaneous candidiasis (CC), esophageal candidiasis and 
vulvovaginal candidiasis (VVC) [26]. Increased risk of 
OPC is seen either in smokers of tobacco products or 
in patients with the following disorders: xerostomia, 
Sjögren’s syndrome (SjS), cancer therapy followed by 
local mucosal injury, hyposalivation as well as in patients 
with local or systemic steroid and antibiotic treatments 
[8]. Furthermore, OPC is one of the first clinical signs of 
HIV infection, and is diagnosed in up to 95% of HIV+ 
patients [37]. !e main described clinical forms of OPC 
are pseudomembranous (so-called thrush), erythema-
tous, and angular cheilitis [8]. A chronic mucocutane-
ous candidiasis (CMC) is characterized by chronic or 
recurring infection of the skin, nails, oropharyngeal and 
esophageal involvement without the tendency for sys-
temic dissemination and with increased frequency of 
endocrinopathy [5]. !e CC has a number of predisposi-
tions, such as warmth, moisture and immunosuppres-
sion [26]. Candida albicans is responsible in over 85% 
for vulvovaginal candidiasis cases [28]. Fungal infection 
are very frequent in women, in fact, vulvovaginal can-
didiasis (VVC) a<ected up to 75% of all women [52]. 
Moreover, about 5–10% of women developed recurrent 
form – RVVC [5, 31–34]. Unlike systemic candidiasis, 
characterized by the presence of Candida in normally 
sterile sites locations in the body, VVC and RVVC a<ect 
vaginal tissue, where C. albicans is a natural commen-
sal [5]. !e systemic, invasive C. albicans infection (ICI) 
can a<ects organs causing pneumonia, endocarditis, 
myocarditis, pericarditis, meningitis, endophthalmitis, 
arthritis, osteomyelitis [35, 36]. Candida albicans is the 
most frequent causative factor of 50–70% of all invasive 
infections [38]. 

Although the incidence of candidaemia in Europe 
(0.5 episodes per 10,000 patient days) is lower than in 
the United States (2 episodes per 10,000 patient days), 
the incidence in Europe has recently increased [36]. 
!e recent study by S c h e l e n z  [93] on surveillance 
conducted in hospitals in the United Kingdom showed 
that C. albicans remains the most common species caus-
ing candidaemia in Intensive Care Unit patients. Fur-
thermore, study of Z a o u t i s  [100] and N g u y e n 
et al. [79] conducted in neonatal intensive care unit in 
the United States and France respectively showed that 
C. albicans was the most frequent species responsible for 
invasive candidiasis infection in neonatal patient group. 
According to S c h o f i e l d  et al. [95], M o r r i s o n 
et al. [73], B i a l k o v á  and Š u b í k  [9], S c h e l e n z 
[93], C. albicans was responsible for 59% of nosocomial 
candidaemia and for 55% of bloodstream infections. 
E n o c h  et al. [47] noted that C. albicans was responsi-
ble for 79.4% of candidaemias in intensive-care patients, 
but only for 37.5% in haematology patients. !e con-
tribution of C. albicans in invasive and disseminated 
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candidiasis appears highly similar in United States and 
Europe and accounts from 49 to 55% [36]. According 
to Kul lberg  and Fi l ler  [65] among the risk factors 
that predispose to candidaemia and disseminated can-
didiasis are: cancer (26%), abdominal surgery (14%), 
diabetes mellitus (13%) or human immunodeficiency 
virus (10%). 

In the light of the above-mentioned literature data 
systemic mycoses of C. albicans etiology constitute 
a  serious clinical problem world-wide. !e high fre-
quency of occurrence of these infections as well as the 
high mortality of patients with immunosuppression 
cause a tendency toward better understanding of C. albi-
cans virulence factors and developing sensitive and spe-
cific diagnostic methods and appropriate strategies for 
candidiasis treatment.

Candida albicans strains represent an important 
clinical problem as they from this species possess more 
virulence factors than non-Candida albicans strains [5, 
28, 39, 41]. Virulence factors identified so far include 
such phenomena as morphogenetic transition from 
yeast to pseudo- and true hyphae, adhesion to inert 
and biological substrates, production and secretion of 
hydrolytic enzymes, biofilm formation, antigenic vari-
ability and phenotype switching [1, 5, 13, 27, 43, 47, 
48]. !is review focuses on characteristic and function 
of the members of aspartyl proteinase, which have been 
studied in more detail, and are key virulence factors in 
C. albicans pathogenesis.

2. Extracellular enzymes and C. albicans virulence

Candida albicans is a producer of extracellular hydro-
lytic enzymes [9]. !e hydrolytic enzymes produced by 
C. albicans in addition to the simple role of digesting 
molecules for nutrient acquisition, fulfil a number of 
functions [2]. It is generally considered that some of 
hydrolytic enzymes, such as beta-N-acetylhexosamini-
dase (HexNAcase), formerly known as N-acetyl-beta-
D-galactosaminidase (NAGase), acid phosphatase and 
beta-D-glucosidase contribute specifically to the di<er-
entiation of C. albicans yeast strains [59, 60]. N i i m i 
et al. [80] reported the HexNAcase enzyme to be a viru-
lence factor for C. albicans since the HexNAcase-defi-
cient mutant (EOB4) of the ATCC 10261 strain was less 
pathogenic than the parental wild type strain in a mouse 
infection model. H u b e  and N a g l i k  [58] reported 
that production of hydrolases contributes to coloniza-
tion of host surfaces, enhances adhesion by degrading 
host surface molecules, and allows penetration into 
deeper host tissues by digesting host cell membranes or 
evasion of host defence mechanism by digesting cells 
and molecules of the host immune system. !e three 
most significant extracellular hydrolytic enzymes pro-

duced by C. albicans i.e., the phospholipases, lipases 
and secreted aspartyl proteinases (Saps) are linked to 
virulence [12, 58]. Phospholipases are important patho-
genicity determinants in C. albicans. !ey play a signifi-
cant role in damaging cell membranes by destroying 
phospholipids in host cells, therefore inducing cell 
lysis and facilitating tissue invasion [3, 12]. !ere are 
four types of secreted phospholipases: A, B, C and D 
[27]. Among them phospholipase B contributes to the 
pathogenicity of C. albicans by abetting the fungus in 
damaging and traversing host cell membranes [12]. 
Lipases are enzymes that catalyze both the hydrolysis 
and synthesis of triacylglycerols [51]. Candida albicans 
can produce at least nine lipases which can hydrolyze 
ester bonds of mono-, di-, and triacylglycerols [92]. 
Moreover, secreted lipases may play role in the adhesion 
and penetration steps of infection process in murine 
model of haematogenously disseminated candidiasis 
[29, 51]. Based on observations made by K i t a n o v i c 
et al. [62], esterase activity (hydrolysis of ester bounds 
of triacylglycerols) is a common feature of C. albicans 
strains isolated from clinical specimens. !e ability 
to secrete hydrolytic enzymes that destroy barriers to 
enable growth and break polymers to provide nutrients 
as well as inactivate the host defense molecules is con-
sidered as one of the virulence factors of C. albicans [54]. 
Among hydrolytic enzymes of Candida spp., aspartyl 
proteinases are by far the most commonly associated 
with virulence [75].

3. Candida albicans aspartic proteinases

Candida albicans secreted aspartic proteinases (Saps) 
represent a family of 10 related proteinases [57, 76] 
which catalyze the hydrolysis of peptide bonds (CO-NH) 
in proteins [35, 62, 69, 75, 99]. Ten SAP genes are 
located on five di<erent chromosomes [43]. N a g l i k 
et al. [114] noted that within Sap isoenzyme family 
distinct groups based of sequence homology are clus-
tered: Sap1 to Sap3 are up to 67% identical, and Sap4 
to Sap6 are up to 89% identical, while Sap7 is only 
20 to 27% identical to other Sap proteins, which makes 
it the most diverged member of family. It seems appar-
ent from the previous studies [58, 75, 92] that Sap1-
Sap8 proteins are secreted extracellularly, whereas Sap9 
and Sap10 remain anchored in the fungal membrane. 
!e proteases Sap9 and Sap10 are bound to the fun-
gal cell surface by a glycosylphosphatidylinositol (GPI) 
anchor motif. Of these, Sap9 seems to be predominantly 
located in the cell membrane, and Sap10 is located in 
the cell wall and membrane [4]. Many of the early pro-
teinase studies focused on the detection of Sap anti- 
gens inside the morphologies of C. albicans using poly - 
clonal antibodies [35, 73, 97]. Accordingly, reports using 
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immunogold-labelling techniques revealed that Sap pro-
teins are localized inside the cell wall of yeast and hyphal 
cells of C. albicans [86–88, 97]. Moreover, S t r i n g a r o 
et al. [97] demonstrated that in rats with developed vagi-
nitis the ultrastructural localization of Sap is observed 
only within the cell wall of hyphal cells. Similar results 
were observed in the in vitro model of experimental 
oral candidiasis [86] and reconstituted human epi-
dermis (RHE model) [88]. In our study (unpublished 
data), immunogold labeling showed that in pleomor-
phic forms Sap1-6 localize mainly in the cell wall and 
in the cytoplasm. !e cytoplasm-located clusters of the 
enzyme marker surrounded by a membrane-like struc-
ture were observed (Fig. 1). For more information on 
processing cultivation and regulation of Sap, the reader 
is guided to reference by N a g l i k  et al. [75].

Many authors [35, 42, 58, 62, 69, 72, 73, 75, 76, 82, 
88, 91, 92, 99] pointed out that Sap production is asso-
ciated with a number of C. albicans virulence features, 
including hyphae formation, adhesion and phenotypic 
switching. !ese findings are supported by the fact 
that C. albicans SAP genes appear to have no equiva-
lents in less pathogenic yeast specie – Saccharomyces 
cerevisiae [69]. Furthermore, the proteinases appear 
to have adapted their biochemical properties to fulfil 
a number of specialized functions during the of infec-
tion process, e.g., digestion of host cell membranes and 
molecules of the host immune system to avoid antimi-
crobial attack by the host [56, 75, 76, 98]. For example, 
a more recent study by G r o p p  et al. [53] found that 
the Sap proteinases degrade and inactivate the central 
human complement components C3b, C4b as well as 

Fig. 1. Immunoelectron microscopy (IEM). Detection of Sap3 in pleomorphic cells of Candida albicans clinical 
strain using polyclonal rabbit anti-Sap3 serum and goat-anti-rabbit IgG conjugated to 5 nm gold particles. (A-D) 
Cells cultivated in Sap-inductive undiluted human serum for 18 h. (A) Control without anti-Sap3 antibody. No 
evidence of gold particles in control cells is seen. (B) Separate gold particles and clusters of them are visible in 
the cytoplasm (arrows) and in the cell wall (cw). (C) Note the vesicle packed with gold clusters in the cytoplasm 

(arrows). (D) Note the cytoplasm- and cell wall-located clusters of the enzyme marker (arrows). Bars = 1 µm
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C5 and block the damaging e<ects of the activated 
complement system. 

Numerous studies (see the following section) have 
correlated the SAP expression and morphogenesis pro-
cess under hyphae inducing conditions. SAP genes were 
shown to be expressed di<erentially according to the 
morphological form of the fungus and the surrounding 
environment supporting transition [74]. N a n t e l  et al. 
[78] showed that the serum favoured hyphae forma-
tion and expression of Sap4-6. In contrast, H u b e  and 
N a g l i k  [58] reported that hyphae induction alone is 
sufficient for Sap expression and that the protein com-
ponents of the serum are not necessary. On the contrary, 
early study of B r o w n  and G o w  [21] demonstrated 

that Sap6 is expressed when hyphae growth is stimu-
lated using polypeptide-containing culture media. To 
address this, two reports [35, 38] showed that hyphae 
formation was induced in modified Lee’s medium a}er 
18 h and under the same growth condition expression 
of Sap4-6 was detected. Finally, it was clearly established 
[35, 66, 75, 76, 91, 92] that yeast cells predominantly 
produce Sap1-3, while hyphae produce mainly Sap4-6. 
Supporting these data, more recent report by dos San-
tos [43] noted that the expression of SAP1-SAP3 and 
SAP8-SAP10 is detected in yeast cells, while the expres-
sion of SAP4-SAP6 is associated with the filamentous 
forms. However, N a g l i k  et al. [77] concluded that 
although Sap5 may play an indirect role in facilitating 

Table I
Expression of secreted aspartyl proteinases in human and in animal models

Model Infection
Secreted
aspartyl

proteinases
Assay Main findings

Refer-
ences

Murine and Systemic SAP4-6 Southern blotting, SAP4, SAP5 and SAP6 expression was observed [43]
guinea pig infection  survival curves during progression of systemic infection
    by C. albicans in animals

Murine and Disseminated SAP1-3 Southern blotting, SAP1, SAP2 and SAP3 were detected during [20]
guinea pig infection  hybridization autoradiography C. albicans disseminated infections

Rat Infected rat Sap Immunoelectron microscopy, Sap secreted by C. albicans during rat vaginitis; [53]
 vagina  SDS-PAGE with antirabbit IgG Sap localized in the cell wall of hyphal forms
   or antimouse IgG-peroxidase during infection
   conjugated 

Human  Sera  Sap Western blot with monoclonal Detection of Sap antigen in the sera of patients [7]
   antibody (MAb) with invasive candidias

Human Oral candidiasis SAP1-7 RT-PCR SAP1-3 transcripts were observed in patients [34]
    with oral candidiasis

Human Oropharyngeal Sap1-3 Immunoelectron microscopy !e expression of Sap1-3 does not con~rm [46]
 candidiasis  with murine monoclonal a pathogenetic role of the Sap1-3 in host-fungal
   antibody interaction

Human Oral and Sap1-3 or Immunoelectron microscopy Sap1-3 crucial for mucosal and cutaneous [47]
 cutaneous Sap4-6  candidiasis
 candidiasis

Mice Gastrointestinal SAP1-6 RT-PCR, IVET Expression of SAP4-6 was detected in higher [25]
 infection   percentage than SAP1-3; individual Saps are
    not indispensable factors for virulence

Mice Disseminated SAP4-6 RT-PCR; immunoelectron Hyphal morphologies without expression [15]
 candidiasis  microscopy  of SAP6 are less virulent; Sap1-3 antigens were
    found on yeast and hyphal cells, Sap4-6 were
    predominantly found on hyphal cells in close
    contact with host cells

Human Vaginal SAP1-10 RT-PCR SAP5 and SAP2 transcript were expressed in [48]
 candidiasis   C. albicans cells infecting human epithelia in vivo 

Mice Keratitis SAP4-6 Southern blot analysis SAP6 appears to be associated with morpho- [23]
 infection model   genetic transformation of yeast to invasive
    filamentous forms, SAP6 contributes to corneal
    pathogenicity, 

Human Oral candidiasis SAP1-6 qRT-PCR SAP5 and SAP9 are the most highly expressed [37]
    proteinase genes in vivo

Mice  Disseminated SAP1-6 qRT-PCR Expression of SAP1-6 was low in murine model [11]
 infections   of haematogenously disseminated candidiasis



132 M. STANISZEWSKA, M. BONDARYK, K. SIENNICKA, J. PIŁAT, M. SCHALLER, W. KURZĄTKOWSKI

hyphal invasion, but SAP5 expression can be hypha-
independent during oral and vaginal (RHE) infection. 
Yet, detailed information on Sap expression in di<erent 
pleomorphic forms of C. albicans is still lacking. 

Research e<orts by many investigators in di<erent 
laboratory have concentrated on the correlation study 
between Sap production in vitro and the virulence of 
C. albicans [4, 13, 40, 56, 58, 61, 63, 64, 67, 76, 81, 83, 
85–91]. !e first observation of extracellular proteinase 
involvement in C. albicans attachment to oral mucosa 
was presented by B o r g  and R ü c h e l  [13]. To address 
this, Sap production by C. albicans was demonstrated 
by S c h a l l e r  et al. [85, 86, 88, 91]. Although the gene 
expression pattern of the vaginal RHE model was dif-
ferent from that in the oral RHE model, it was clearly 
suggested that Sap1 to Sap3 are the main proteinases 
contributing to the early stages of mucocutaneous infec-
tions. Moreover, S c h a l l e r  et al. [87] also analyzed 
SAP expression in the in vitro model of cutaneous 
candidiasis based on reconstituted human epidermis. 
!is analysis was undertaken to confirm the SAP1-3 
predominant expression in this type of infection. Two 
recent reports have correlated proteolytic activity of Saps 
in vitro with the virulence of C. albicans species [67, 77]. 
!e latter authors studied the role of Sap isoenzymes 
in C. albicans pathogenesis by comparising virulence of 
mutants with one or multiple SAP genes disturbed to 
wild-type control strain. As a result, using RHE models 
of oral and mucosal infections in human, it was founded 
that only Sap5 is potentially contributed to C. albicans 
virulence. Moreover, N a g l i k  et al. [77] indicated that 
SAP9 is consistently the most highly expressed protein-
ase gene in monolayers and RHE models. According to 
the same group [77] SAP5 is the only gene significantly 
upregulated as infection progressed in oral and vaginal 
RHE models. !is study [77], therefore allows to con-
clude that both genes (SAP5 and SAP9) do not inVuence 
fungus morphology. Finally, the latter studies abolished 
earlier findings that Sap1-3 subfamily is required for 
invasion of human epithelia as previously concluded 
[64, 74–76, 85–89, 91]. For example, N a g l i k  et al. 
[77] indicated that the overall individual contribution 
of Sap1-3 and Sap4-6 subfamilies in inducing epithelial 
damage in the RHE model appears to be low. On the 
other hand, studies [40] using fungal mutants as well as 
set of fungal and host cells inhibitors demonstrated that 
proteases Sap1-6 support invasion into oral or intestinal 
epithelial cells. Finally, one should be noted that all of 
the above discrepancies in the results presented by many 
authors may be related either to di<erences in the sensi-
tivity of methods used, or di<erences in infection mod-
els and stage of the epithelial cells, as well as variability 
among C. albicans strains [40, 67]. In fact, there are no 
directly comparable studies by di<erent authors using 
the same technique, model, or site of infection (Table I). 

4. Summary

In this review the of involvement secreted aspartic 
proteinase (Sap) members’ in the pathogenesis of C. albi-
cans infections, risk factors for candidiasis, as well as 
the incidences of candidiasis. !e proteolytic activity 
of secreted aspartyl proteinases has been extensively 
studied in the last years [13, 24, 35, 57, 63, 75, 86–88, 
90]. Aspartic proteinases are considered most signifi-
cant extracellular hydrolytic enzymes as they are the key 
virulence factor in C. albicans pathogenesis. Saps have 
a number of specialized functions during infection e.g.: 
their proteolytic activity has been associated with tis-
sue invasion as they degrade host proteins at mucosal 
sites; also Sap isoenzymes degrade and inactivate the 
central human complement components [3, 4, 53, 75, 
76]. !e Sap isoenzymes’ role in C. albicans virulence has 
been supported by the fact that Sap production is asso-
ciated with a number of other virulence factors such as 
adhesion, hyphal formation, pleomorphism, phenotypic 
switching [70]. At present, the roles and functions of the 
Saps during the infective process in humans are not clear 
and thus future functional studies have to be conducted.
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