Leukocydyna Panton-Valentine – aspekty znane i nieznane
1. Wstęp. 2. Struktura toksyny PVL. 3. Geny PVL i regulacja ich ekspresji. 4. Mechanizm działania toksyny PVL. 5. Znaczenie kliniczne szczepów produkujących toksynę PVL. 6. Badania na modelach zwierzęcych. 7. Metody detekcji toksyny PVL. 8. Podsumowanie
Abstract: Panton-Valentine leukocidin (PVL) is a two component pore-forming cytotoxin composed of LukS-PV and LukF-PV subunits, which mainly acts on mammalian neutrophils, monocytes and macrophages. The mechanism of action of PVL and its role in the pathogenesis of staphylococcal infections are still poorly understood. In vitro studies showed a concentration-dependent cytotoxic effect of PVL (formation of pores in the cell membrane), leading to apoptosis or necrosis of phagocytes. Nevertheless, it should be emphasized that, to date, it has not been proven that causing damage to phagocytes is the main function of PVL in vivo. It is known, however, that the concentration of PVL in vivo is not sufficient to induce cytolysis. Furthermore, it has been shown that sublithic concentration of PVL in vivo can activate and intensify bactericidal properties of phagocytes. Nowadays, PVL is epidemiologically linked mainly to community-associated methicillin-resistant S. aureus infections. There are also available, though very limited, data concerning the isolation of pvl-positive MRSA and MSCNS strains from domestic and farm animals.
1. Introduction. 2. The structure of the PVL toxin. 3. PVL genes and the regulation of their expression. 4. The mechanism of action of PVL toxin. 5. The clinical significance of strains producing PVL toxin. 6. Studies on animal models. 7. PVL toxin detection methods. 8. Summary