Abstract: The uricase enzyme yields allantoin, hydrogen peroxide, and carbon dioxide by catalyzing the oxidative opening of the purine ring in the urate pathway. This enzyme is important for biochemical diagnosis and reduces toxic urate accumulation during various diseases (hyperuricemia, gout, and bedwetting). Direct urate oxidase injection is recommended in renal complications-associated gout and to prevent chemotherapy-linked hyperuricemia disorders. Thus, uricase is a promising enzyme with diverse applications in medicine. Microbial production of uricase is featured by high growth rates, cost-effective bioprocessing, and easy optimization of the medium. Microbes produce the enzyme extracellular or intracellular. Extracellular uricase is preferred for biotechnological applications as it minimizes time, effort, and purification processes. This review provides insights into uricase-producing microbes, bacterial uric acid degradation pathways, degrading enzymes, and uricase-encoding genes.
Furthermore, aspects influencing the microorganisms’ production of the uricase enzyme, its activity, and its purification procedure are also emphasized. Cell disruption is mandatory for intercellular uricase production, which elevates production costs. Therefore, extracellular uricase-producing microbial strains should be investigated, and production factors should be optimized. Future techniques for obtaining extracellular enzymes should feature reduced time and effort, as well as a simple purification methodology. Furthermore, uricase gene-carrying recombinant probiotic microorganisms could become an effective tool for gout treatment.
All posts by Anna Białecka
Abstract: Genetic, endocrine and immunological disorders, anatomical defects in the reproductive tract, certain chronic diseases, toxic substances, or advanced age of the mother are most cited among the main causes of pregnancy loss at various stages. However, the cause of miscarriage or preterm labor in some cases remains unclear. Determination of the etiology about these clinical conditions may reduce the rate of reproductive failure. Similarly, the etiology of other obstetric disorders, such as preeclampsia or postpartum hemorrhage, has not been fully explained. One of the postulated and still under-researched causes of these disorders may be dysbiosis within the reproductive tract. A disturbed microbial balance is not always associated with the presence of an acute infection with clear clinical symptoms. Dysbiosis in conjunction with other pathophysiological factors may increase the risk of the mentioned clinical conditions. The aim of this paper is to show the information indicating the existence of a correlation between dysbiosis and an increase in the risk of obstetric disorders. Further analysis is also required to clarify the mechanism of the effect of dysbiosis on the disruption of metabolic and biochemical processes within the reproductive system during pregnancy.
Abstract: Skin, the largest organ in the human body, presents the largest possible area for colonization by microorganisms. The aspects of the interaction between microbiota and the host cannot be omitted during procedures in a beauty studio. Professional cosmetologists should consider their work’s impact on skin biodiversity and know the probable consequences. This review reviewed the current state of the art on skin microbiota with a focus on the connection between body area, microbiological biodiversity and the outcome of cooperation between the host and microorganisms. The role of the skin microbiota in maintaining the host’s homeostasis was also summarized.
Abstract: Neisseria gonorrhoeae (gonococcus) is a human pathogen, the aetiological agent of gonorrhoea, which is the second most common bacterial sexually transmitted disease (STD) in the world. The structure of N. gonorrhoeae cell wall is typical of Gram-negative bacteria, poses variable antigens porin B (PorB), and opacity-associated proteins (Opa proteins), lipooligosaccharide (LOS) and type IV pili (TFP) playing an essential role in pathogenesis. In addition to adhesins, gonococcus presents other virulence factors such as reducing modifiable protein (Rmp), iron transporters, membrane pumps, and IgA peptidase. The pathogen produces outer membrane vesicles (OMVs), releases peptidoglycan (PG) fragments and is well adapted to develop infection in diverse niches of the female and male reproductive tracts. The characteristic genotypic trait of N. gonorrhoeae is the state of natural competence, which allows DNA uptake from the environment. The antigenic and phase variability is essential to gonococcal defence against the human immune system. Because of the increasing antimicrobial resistance (AMR) of N. gonorrhoeae and the high incidence rate of gonococcal infections, developing an anti-gonococcal vaccine has become an urgent need. Vaccine development difficulties are mainly due to the gonococcal ability of immune evasion, the lack of an animal model, and the limited understanding of protective immune response mechanisms.
Abstract: Neisseria gonorrhoeae is an aetiological agent of gonorrhoea, which is a sexually transmitted disease (STD), a public health challenge worldwide. Gonorrhoea is undoubtedly a serious health risk, especially for women, due to its often asymptomatic course and the possibility of upper genital tract complications such as pelvic inflammatory disease (PID), which can result in infertility. The data show that the diagnostic method for N. gonorrhoeae should be specific, simple, sensitive, rapid and inexpensive. Currently, phenotypic identification methods have been dominated by NAAT methods, which allow detection and identification of gonococcus directly in the clinical specimen. However, up today molecular methods do not allow full determination of drug susceptibility.