All posts by Postępy Mikrobiologii
Abstract: The ability to from biofilms, which is a common feature in Salmonella serovars, is the main cause of persistent infections and permanent contamination in both clinical and industrial systems. Because the biofilm structures are significantly more resistant to environmental stress conditions than the planktonic forms of bacteria, it is often impossible to remove them through conventional disinfection or sterilization practices. Therefore, it has become necessary to develop effective strategies in combating biofilms, which are defined as the dominant form of microbial life. To achieve this goal, it is necessary to understand the genetic regulatory mechanisms that control the transition from planktonic form to the biofilm form and the related changes in gene expression. In this review, the current state of knowledge regarding gene regulation systems that affect the biofilm formation in Salmonella, has been summarized and discussed.
1. Introduction. 2. Regulation of biofilm formation in Salmonella. 2.1.csgD. 2.2. BarA/SirA and Csr system. 2.3. PhoPQ and RstA. 2.4. The interaction of cells in the biofilm structures through signal molecules. 2.5. sRNA’s. 2.6. dam and seqA. 2.7.MarT. 3. Conclusion
Streszczenie: Koronawirus 2 ciężkiego ostrego zespołu oddechowego (SARS-CoV-2 – Severe Acute Respiratory Syndrome Coronavirus 2) jest trzecim po koronawirusie ciężkiego ostrego zespołu oddechowego (SARS-CoV – Severe Acute Respiratory Syndrome Coronavirus) i koronawirusie środkowo-wschodniego zespołu oddechowego (MERS-CoV – Middle East Respiratory Syndrome Coronavirus), koronawirusem, który w XXI wieku pokonał barierę międzygatunkową wywołując u człowieka ciężkie schorzenie określane jako COVID-19 (coronavirus disease-19). Praca niniejsza prezentuje najnowsze informacje na temat biologii koronawirusów, co ma pomóc w zrozumieniu wielu zagadnień związanych z zakaźnością SARS-CoV-2 i patogenezą COVID-19 oraz usystematyzować najnowsze informacje dotyczące tych zagadnień. Na wstępie przedstawiono podstawowe informacje dotyczące taksonomii, budowy i replikacji koronawirusów stanowiące podstawę dla dalszych rozważań. Następnie wyjaśniono zjawiska molekularne umożliwiające koronawirusom pokonanie bariery międzygatunkowej. Dalsza część pracy poświęcona została mechanizmom oddziaływania pomiędzy koronawirusami i receptorami komórkowymi stanowiącymi czynnik warunkujący tropizm gatunkowy i tkankowy oraz przebieg kliniczny zakażenia. Szczególną uwagę poświęcono receptorom komórkowym, peptydazie dwupeptydylowej IV oraz konwertazie angiotensyny typu 2, oddziałującym z białkiem S koronawirusów oraz proteazom komórkowym zaangażowanym w proteolizę biała S. Czynniki te determinują wejście wirusa do komórki oraz jego replikację i każda nawet niewielka zmiana jakościowa lub ilościowa w ekspresji tych czynników może mieć wpływ na przebieg zakażenia. W pracy omówiono również mechanizmy odpowiedzi układu odpornościowego na zakażenie koronawirusami istotne w patogenezie COVID-19.
1. Wprowadzenie. 2. Patogeneza i patofizjologia COVID-19. 3. Charakterystyka koronawirusów. 3.1. Systematyka. 3.2. Morfologia. 3.3. Białko S. 3.4. Replikacja. 4. Jak koronawirusy pokonują barierę międzygatunkową? 5. Receptory komórkowe dla koronawirusów.5.1. Peptydaza dwupeptydylowa IV. 5.2. Konwertaza angiotensyny typ 2. 6. Procesowanie proteolityczne białka S. 7. Mechanizmy immunopatogenezy indukowanej zakażeniem SARS-CoV-2. 7.1. Burza cytokinowa. 7.2. Wyniszczenie i zmniejszenie liczebności limfocytów. 7.3. Wzrost liczebności neutrofili. 7.4. Wzmocnienie zależne od przeciwciał. 8. Podsumowanie
Abstract: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the third, following SARS-CoV (Severe Acute Respiratory Syndrome Coronavirus) and Middle East Respiratory Syndrome-CoV (MERS), zoonotic coronavirus that has crossed the species barrier in XXI century resulting in the development of serious human infection termed COVID-19 (coronavirus disease-19). However, there are still many unanswered questions about its transmissibility and pathogenesis, what impelled us to gather the most recent facts about the nature of coronaviruses. At first we introduced the basic information about coronavirus taxonomy, structure, and replication process to create the basis for more advanced consideration. We also put across the molecular basis of the strategy used by coronaviruses to cross the species barrier. In the following part of this review we focused on the interactions between the virus and the receptor on the host cell, as this stage is the critical process determining the species and tissue tropism, as well as clinical course of infection. The special attention was paid to the cellular receptors interaction with S protein of different CoVs (dipeptidyl peptidase IV and angiotensin-converting enzyme 2) as well as the cellular proteases involved in proteolysis of this protein. These factors determine the virus entry and replication, thus even the fine quantitative or qualitative difference in their expression may be crucial for outcome of infection. We also considered the host immune response and viral evasion mechanisms which would be helpful to understand COVID-19 pathogenesis. We wish the information provided by this review may be helpful to understand virus biology and to develop efficient therapeutic and preventive strategies.
1. Introduction. 2. Pathogenesis and pathophysiology of COVID-19. 3. Nature of coronavirus.3.1. Taxonomy. 3.2. Morphology. 3.3. S protein. 3.4. Replication. 4. How can coronaviruses cross the species barrier? 5. Cellular receptors for coronaviruses. 5.1. Dipeptidyl peptidase IV. 5.2. Angiotensin-converting enzyme 2. 6. Spike protein cleavage. 7. Mechanisms of immunopathogenesis induced bySARS-CoV-2. 7.1. Cytokine storm. 7.2. Depletion and exhaustion of lymphocytes. 7.3. Increased neutrophils. 7.4.Antibody-dependentenhancement. 8. Summary
Streszczenie: Glikokoniugaty bakteryjne są szeroko rozpowszechnione i mają różnorodne funkcje biologiczne. Przykładem są glikoproteiny, które uczestniczą w adhezji, inwazji czy unikaniu mechanizmów obronnych gospodarza. Systemy umożliwiające tę modyfikację są od niedawna obiektem intensywnych badań naukowych. Ich aktywność opiera się na działaniu glikozylotransferaz – enzymów, które przenoszą reszty cukrowe bezpośrednio na białko akceptorowe (glikozylacja sekwencyjna) lub na lipidowy nośnik, z którego glikan na docelowe białko przenosi transferaza oligosacharydowa (glikozylacja en-bloc). Wprowadzenie genów odpowiadających za glikozylację białek do komórek E.colii uzyskanie funkcjonalnych, rekombinowanych glikoprotein, spowodowało rozwój glikoinżynierii bakteryjnej. Transferazy oligosacharydowe wykazują aktywność wobec szerokiej gamy substratów, co można wykorzystać m.in. do produkcji szczepionek polisacharydowych.
1. Potranslacyjne modyfikacje białek. 2. Glikozylacja – charakterystyka. 3. Glikozylacja białek w komórkach organizmów eukariotycznych. 4. Glikozylacja białek u bakterii. 4.1. O-glikozylacja w komórkach bakteryjnych. 4.2. N-glikozylacja u organizmów prokariotycznych. 5. Praktyczne zastosowania glikozylacji białek – glikoinżynieria. 6. Podsumowanie
Abstract: Bacterial glycoconjugates are widespread and have diverse biological functions. Multiple bacterial glycoproteins are involved in adhesion, invasion or evasion of host defense mechanisms. A range of glycosylation pathways has recently been an object of intense research. Their activity is based on the glycosyltransferases – enzymes that transfer sugar moieties directly to the acceptor protein (sequential glycosylation) or to a lipid carrier from which the glycan is transferred by an oligosaccharyltransferase onto the target protein (en-bloc glycosylation). Successful implementation of complete glycosylation systems in Escherichia coli cells resulted in rapid development of bacterial glycoengineering. Oligosaccharyltransferases are characterized by a broad substrate specificity which may be exploited to produce glycoconjugate vaccines.
1. Post-translational protein modifications. 2. Characteristics of glycosylation. 3. Protein glycosylation in eukaryotic cells. 4. Protein glycosylation in bacteria. 4.1. O-glycosylation in bacterial cells. 4.2. N-glycosylation in bacterial cells. 5. Practical applications of protein glycosylation – glycoengineering. 6. Summary
Streszczenie: Od dawna wiadomo, że bakterie z rodzaju Lactobacillus stanowią dominujący składnik mikrobioty pochwy i pełną ochronną rolę dla mikrośrodowiska pochwy. Obecność bakterii z rodzaju Lactobacillus potwierdzono również w górnej części układu rozrodczego żeńskiego oraz w męskim układzie rozrodczym i w spermie. Niniejsza praca stanowi przegląd najnowszej literatury dotyczącej wpływu bakterii z rodzaju Lactobacillus na płodność, z uwzględnieniem zarówno czynnika żeńskiego, jak i męskiego. Rola mikrobioty może okazać się niezwykle istotna w przypadkach niepłodności idiopatycznej. Najnowsze doniesienia wskazują na możliwy związek pomiędzy obecnością bakterii z rodzaju Lactobacillus a efektywnością technik wspomaganego rozrodu. Wyniki badań potwierdzają, że środowisko mikrobiologiczne układu rozrodczego to ważny a zarazem słabo poznany czynnik wpływający na płodność człowieka.
1. Wprowadzenie 2. Bakterie z rodzaju Lactobacillus w żeńskim układzie rozrodczym. 3. Rola bakterii z rodzaju Lactobacillus w żeńskim układzie rozrodczym. 4. Mikrobiota nasienia 5. Rola bakterii z rodzaju Lactobacillus w nasieniu. 6. Mikrobiota a niepłodność idiopatyczna 7. Bakterie z rodzaju Lactobacillus a efektywność technik wspomaganego rozrodu. 8. Podsumowanie
Abstract: It is well known, that vaginal microbiota is dominated by Lactobacillus genus. These bacteria protect a vaginal microenvironment against the invading pathogens. The presence of Lactobacillus communities was already confirmed in an upper female reproductive system, as well as in the male reproductive system and semen. In this paper we present the current state of knowledge about the influence of the Lactobacillus species on female and male fertility. We also discuss the possible role of the reproductive system microbiota in an idiopathic infertility, and the association between Lactobacillus species and effectiveness of assisted reproductive techniques. Further research on the relationship between the reproductive system microbiota and human fertility is needed.
1. Introduction. 2. Lactobacillus bacteria in the female reproductive system 3. The role of Lactobacillus bacteria in the female reproductive system. 4. Semen microbiota 5. The role of Lactobacillus bacteria in semen 6. Microbiota and idiopathic infertility. 7.Lactobacillus bacteria and the effectiveness of assisted reproductive techniques. 8. Summary