All posts by Postępy Mikrobiologii

Przeciwdrobnoustrojowe właściwości naturalnych jonoforów karboksylowych i ich pochodnych

Antimicrobial properties of natural carboxylic ionophores and their derivatives
J. Stefańska

1. Wstęp. 2. Właściwości biologiczne jonoforów karboksylowych i ich zastosowanie. 3. Aktywność przeciwdrobnoustrojowa naturalnych jonoforów karboksylowych i ich pochodnych. 4. Podsumowanie

Abstract: Polyether ionophore antibiotics are a large group of natural substances, produced by various species of Streptomyces. These agents possess the ability to transport metal cations across lipid membranes, interfere with natural ion transport systems in cells and exhibit a variety of biological properties (antibacterial, antiparasitic, antiinflammatory or antiacancer). Several ionophores (e.g. lasalocid, monensin, narasin, salinomycin) are commercially applied as coccidiostatics in veterinary. The purpose of this report is to present an overview of antimicrobial activities of selected ionofores – lasalocid, monensin and salinomycin, and their derivatives.

1. Introduction. 2. Biological properties of carboxylic ionophores and their application. 3. Antimicrobial activity of natural carboxylic ionophores and their derivatives. 4. Summary

Mikroflora miodu jako źródło spor C. botulinum i przyczyna rozwoju botulizmu niemowląt – rozważania na temat zasadności oczyszczania miodu w kontekście obowiązującego prawa

Honey as a reservoir of C. botulinum and a risk factor for infant botulism
K. Rudnicka, P. Kwiatkowska, A. Gajewski, M. Chmiela

1. Wstęp. 2. Fizykochemiczne i przeciwdrobnoustrojowe właściwości miodu. 3. Mikroflora miodu. 4. Środowiskowe rezerwuary C. botulinum. 5. Proces wytwarzania miodu i drogi transmisji spor C. botulinum. 6. Metody oczyszczania miodu i ich wpływ na czystość mikrobiologiczną. 7. Miód jako czynnik ryzyka rozwoju botulizmu niemowląt. 8. Aspekty prawne. 9. Wytyczne dotyczące oznakowania miodu. 10. Zalecenia w sprawie ograniczenia zapadalności na botulizm niemowląt. 11. Podsumowanie

Abstract: Honey is a natural, sweet substance produced by honey bees Apis millifera. In spite of its antimicrobial properties, honey may contain certain microbes, most of which are harmless to humans. However, the presence of Clostridium botulinum in honey is considered a risk factor for infant botulism development. Infant botulism is a toxicoinfection occurring in infants under the age of one year, after C. botulinum spores consumption. This disease is extremely rare, however, in recent years there has been an increase in the number of infant botulism cases. According to CDC (Centres for Disease Control and Prevention) infant botulism constitutes 76% of all botulism cases and more than half occurs as a consequence of honey consumption. C. botulinum is easily transmitted from soil to blossom, pollen, surface of honey bees and then to honey. The Polish legal system states that any integral components cannot be excluded from honey during processing. However, it is impossible to eliminate the spores from honey without deactivating its enzymes or removing pollen. The EU together with CDC recommend that infants under one year of age should not be fed with honey. They obligate the companies to provide the consumer with the information about the risk of honey consumption by infants. In Poland, infant botulism is not registered, is underestimated and may be misdiagnosed as a sudden infant death syndrome. The producers of honey are not obligated to label honey with the proper information about the microbiological risk of its consumption by infants.

1. Introduction. 2. Physico-chemical and antimicrobial properties of honey. 3. Microbiology of honey. 4. Environmental reservoirs of C. botulinum. 5. Production of honey and its contamination routes with C. botulinum. 6. Methods of purification and their impact on microbiological safety of honey. 7. Honey as a risk factor for the infant botulism development. 8. Legal notes. 9. Labeling of honey. 10. Recommendations on the safety of honey consumption by infants. 11. Summary

Sterylizacja za pomocą niskotemperaturowej plazmy, generowanej w warunkach ciśnienia atmosferycznego

Sterilization by low-temperature atmospheric-pressure plasma
A. Dzimitrowicz, P. Jamróz, P. Nowak

1. Wprowadzenie. 2. Plazma jako czynnik sterylizujący. 3. Rodzaje źródeł plazmowych. 4. Mechanizm procesu sterylizacji. 5. Kontrola procesu. 6. Zastosowania. 7. Podsumowanie

Abstract: Plasma is an ionized and reactive gas, which is used for sterilization of many kinds of microorganisms (e.g. bacteria, fungi), which reside on the surface of materials (e.g. medical instruments). Plasma sterilization allows to obtain absolute microbiological purity. Plasma can be generated by dielectric barrier discharge, glow discharge (including corona discharge, plasma jets or microjets) and microwave induced plasma. This article summarises literature review on plasma sterilization methods of microorganisms by low-temperature plasma generated under the atmospheric pressure.

1. Introduction. 2. Plasma as a sterilizing agent. 3. Types of plasma sources. 4. Mechanism of plasma sterilization. 5. Process control. 6. Applications of plasma sterilization. 7. Summary

KOMUNIKATY I INFORMACJE

NEW REPORTS AND INFORMATION

Informacja na temat konferencji „Biologia molekularna w diagnostyce chorób zakaźnych i biotechnologii” DIAGMOL 2015.

Sprostowanie do artykułu „Regulacja bakteryjnych systemów restrykcyjno-modyfikacyjnych (R-M) typu II” (Post. Mikrobiol. 2015, 54, (1), 5–9).

Znaczenie jelitowych mikrobiontów w utrzymaniu ogólnej homeostazy gospodarza

The role of gut microbiome in the maintenance of host homeostasis
M. Binek

1. Wstęp. 2. Znaczenie mikrobiomu jelitowego w etiopatologii niektórych chorób. 3. Czynniki wpływające na kształtowanie się mikrobiomu. 4. Interakcje pomiędzy bakteriami jelitowymi i gospodarzem – systemy komunikacji. 5. Mikrobiom a zachowanie homeostazy. 6. Podsumowanie

Abstract: Recent study on intestinal microbiome irrevocably altered the view that mammalian metabolism is solely influenced by their genome. Intestinal microbiota harbor a repertoire of protein encoding genes that by far exceed the gene pool found in the host genome. This has established the importance of the gut microbiome, because part of the responsibility for host metabolic regulation is devolved to the microbial symbionts. Subtle changes in co-metabolic profiles in response to physiological perturbations or environmental factors lead to many diverse disease processes including inflammatory bowel diseases, colorectal cancer, obesity, circulatory disease, and others. In most mammals, the gut microbiome is dominated by four phyla: Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria. The host has evolved to establish many processes that sustain unresponsiveness toward the commensal bacteria while at the same time maintaining responsiveness toward pathogens. The intestinal microbiome and mucosal tissues are intertwined by multiple interactions influencing host health or disease. Microbes, in response to environmental or host cues, form highly coordinated, multi-cellular networks trough intercellular cross-species and cross-domain signaling pathways, resulting in potent expansion of adaptive response to environmental changes. Similarly, the host is constantly sampling and assessing colonizing organisms and regulates defense mechanism. Under physiological conditions, the intestinal community serves the host via several ways including maturation and regulation of intestinal immune system, energy metabolism, intestinal response to epithelial cell injury and others. Changes to the intestinal milieu influence this advantageous balance is seriously injured, as benign commensals sensing danger rapidly switch to feared pathogens and initiate a coordinated program to invade the succumbed tissues. Molecular mechanisms responsible for recognizing the intestinal microflora are diverse, including numerous pathways like Toll-like receptors (TLRs), formylated peptide receptors (FPRs), nucleotide binding oligomerization-like receptors (NODs) and others with corresponding signal transduction routs. NF-κB depending signaling induce the inflammatory and proapoptotic response. Gastric and mucosal mucosa is engaged, with the ability to respond to inflammatory signals via production of different mediators, i.e. TNFα, IL-1, Il-6, IL-8 and IL-12. Many commensal bacteria have the ability to activate anti-inflammatory responses inducing expression of target genes mediating anti-inflammatory and antiapoptotic effects i.e. IL-10 and TGF-β. Under physiological circumstances, these host-microbiome interactions are considered to be placed at the exquisitely equilibrated state between pro-inflammatory and anti-inflammatory responses.

1. Introduction. 2. The role of the gut microbiome in etiopathogenesis of some systemic diseases. 3. Factors influencing gut microbiome composition. 4. Bidirectional relationship between gut microbiome and host-cross talk process. 5. Microbiom in the maintenance of host homeostasis. 6. Concluding remarks