All posts by Postępy Mikrobiologii

Mechanizmy oporności bakterii na metale ciężkie

Mechanisms of heavy metals resistance in bacteria
E. Oleńska, W. Małek

1. Metale ciężkie – występowanie i toksyczność. 2. Bakteryjne mechanizmy oporności na metale ciężkie. 2.1. Modyfikacje osłon komórkowych uniemożliwiające wnikanie jonów metali do cytoplazmy. 2.2. Usuwanie jonów metali z cytoplazmy na zewnątrz komórki. 2.3. Enzymatyczna detoksyfikacja jonów metali. 2.4. Pozakomórkowe wiązanie jonów metali przez metabolity bakterii.
2.5. Wewnątrzkomórkowe wiązanie jonów metali. 3. Podsumowanie

Abstract: Bacteria play a substantial role in the biogeochemical cycles of metals, many of which exhibit toxicity towards various organisms. These unicellular bacteria are persistently exposed to the intoxication by heavy metals which are natural components of the environment. Intensive industrialization and extensive anthropogenic exploitation of the environment resulted in the release of heavy metals formerly deposed as minerals in rocks and as a consequence, in the pollution increase of all environmental constituents the soil, air and water. Bacteria have evolved various mechanisms of heavy metal resistance. The two most important mechanisms are: (i) heavy metal exclusion by the cellular barrier permeability and their immobilization outside the cell by bacterium metabolites, and (ii) the detoxification of toxic metal ions which entered the cytoplasm by different chemiosmotic and/or energy-dependent efflux systems as well as by intracellular sequestration mechanisms involving low molecular weight proteins such as cysteine-rich metallothioneins. The development of various mechanisms of heavy metal resistance enables bacteria to survive in harsh conditions and also allows us to apply them in the remediation of metal contaminated areas.

1. Heavy metals – their occurrence and toxicity. 2. Mechanisms of bacterial resistance to heavy metals. 2.1. Modifications of the cellular barrier preventing metal ion penetration into the cytoplasm. 2.2. Efflux of metal ions out of the cell. 2.3. Enzymatic conversion of metal ions. 2.4. Extracellular sequestration of metal ions by bacterial metabolites. 2.5. Intracellular sequestration of metal ions. 3. Summary

The role of leucine arylamidase in the virulence of Candida albicans

Rola arylamidazy leucynowej w wirulencji Candida albicans
M. Staniszewska, M. Bondaryk, W. Kurzątkowski

1. Introduction. 2. Biochemical properties of aminopeptidases. 3. Activiation and regulation of the C. albicans leucine arylamidase. 4. Leucine arylamidase production by C. albicans and by other non-albicans yeast species. 5. Leucine arylamidase production and C. albicans yeast-to-hypha transition. 6. Conclusions

Abstract: Candida albicans is an opportunistic pathogen that frequently causes infections ranging from superficial mucosal lesions to disseminated or bloodstream infections. Candida infections are a problem of a growing clinical importance worldwide; therefore virulence factors of this pathogen have been extensively studied. This review focuses on the role and function of leucine arylamidase (Ape2) in C. albicans’ virulence and pathogenesis in human infections. The L-leucine arylamidase is a member of metallo-peptidase group that removes the N-terminal L-leucine from peptide substrates. The hydrolytic enzymes play an important role in both colonization and invasion; moreover, it has been estimated that Ape2 facilitates penetration of C. albicans into the host tissue. Therefore, the comparison of Ape2 activity between Candida species might reveal their still unknown function during infection in vivo. As C. albicans can potentially cause superficial and systemic candidiasis with high mortality in immunocompromised patients, the involvement of this enzyme’s activity in virulence (human tissues destruction) ought to be thoroughly evaluated in the future.

1. Wstęp. 2. Biochemiczne właściwości aminopeptydaz. 3. Indukcja arylamidazy leucynowej w komórkach C. albicans. 4. Wytwarzanie arylamidazy leucynowej przez C. albicans i inne gatunki z rodzaju Candida. 5. Arylamidaza leucynowa a morfogeneza C. albicans. 6. Wnioski

Streszczenie: Oportunistyczny patogen Candida albicans jest przyczyną zakażeń skóry oraz błon śluzowych u ludzi jak również wieloukładowych kandydoz zagrażających życiu pacjentów.  Zakażenia o etiologii C. albicans stanowią poważny problem kliniczny o wymiarze światowym. Częstość ich występowania, a także wysoka śmiertelność u chorych z immunosupresją spowodowały konieczność lepszego poznania czynników wirulencji C. albicans. Niniejsza praca przedstawia rolę arylamidazy leucynowej (Ape2) w  wirulencji C. albicans (adhezji oraz inwazji do tkanek ludzkich). Enzymy hydrolityczne odgrywają rolę w procesie kolonizowania i  inwazji morfotypów C. albicans do ludzkich tkanek. Według danych literaturowych arylamidaza leucynowa należy do grupy egzopeptydaz (trawi wiązanie w miejscu L-leucyny zlokalizowanej na N-końcu substratów białkowych). Dotychczas wykazano również udział Ape2 w inwazji ludzkich tkanek. Porównanie funkcji tego enzymu u różnych gatunków Candida pozwoli na dokładną analizę jego roli, jak dotąd nie poznaną, w patogenezie kandydoz. Jeśli ze względu na częste zakażenia o etiologii C. albicans obarczone wysoką śmiertelnością, patogen ten stanowi przedmiot licznych badań, to szczególną uwagę należy poświęcić jednemu z jego czynników wirulencji tj., arylamidazie leucynowej i jej roli w inwazji i destrukcji tkanek.

Ekstremofile – mikroorganizmy z przeszłością i z przyszłością

Extremophiles – microorganisms with the past and the future
A. Zabłotni, A. Dziadosz

1. Wprowadzenie. 2. Warunki życia i przystosowanie do nich. 2.1. Psychrofile. 2.2. Termofile. 2.3. Acidofile. 2.4. Alkalifile. 2.5. Halofile. 2.6. Piezofile. 3. Z ekstremofilami w przyszłość – biotechnologiczne możliwości wykorzystania. 4. Podsumowanie

Abstract: Extremophilic microorganisms can live and grow under extreme conditions. They exist in many natural, as well as human made habitats characterized by an elevated or low temperature, extreme pH value, high salt concentration and hydrostatic pressure. They represent Bacteria, Archaea and Eucarya domains. Many of them are polyextremophiles. Extremophilic microorganisms use a variety of strategies for survival under unfavourable conditions. Their structural and physiological features have been studied for many years and a novel application area for extremophilic enzymes and other products have been found. A range of new applications is still in development.

1. Introduction. 2. Living conditions and adaptation to them. 2.1 Psychrophiles. 2.2. Thermophiles. 2.3. Acidophiles. 2.4. Alkaliphiles. 2.5 Halophiles. 2.6. Piezophiles. 3. The future with extremophiles – biotechnological potential for use. 4. Abstract

Bioremediacja związków ropopochodnych oraz szlaki ich biodegradacji

Bioremediation of petroleum compounds and their biodegradation pathways
M. Mendrycka, K. Mucha, S. Stawarz

1. Wprowadzenie. 2. Źródła i sposoby rozprzestrzeniania się zanieczyszczeń w glebie 3. Metody biodegradacji związków ropopochodnych 4. Mikroorganizmy genetycznie modyfikowane biorące udział w degradacji związków ropopochodnych 5. Mechanizmy biodegradacji węglowodorów ropopochodnych 5.1. Intradiolowe rozszczepienie pierścienia aromatycznego (typu „orto”) 5.2. Ekstradiolowe rozszczepienie pierścienia aromatycznego (typu „meta”)

Abstract: In recent years, crude oil and its derivatives are one of the main sources of water pollution and land in Poland. Among the chemical compounds the most toxic and carcinogenic effects on living organisms have polycyclic aromatic hydrocarbons and compounds such as benzene, toluene, ethylbenzene, xylenes (BTEX). Biotechnological methods, using hydrocarbon-degrading bacteria seem to be the most justified for environmental reasons and economic considerations. This technology is the introduction of suitable strains
of bacteria and providing mineral and organic substances necessary for life to microorganisms exist and then a rapid multiplication of microorganisms in the soil. Great importance in removing xenobiotics from the environment gained in recent years by biological and biochemical methods. Development of science and a deeper understanding of biochemical mechanisms related to the disposal of organic waste by different microbes allows the use of specialized bacteria, fungi and plants to combat waste. Biodegradation pathways are constantly known. Particular attention is given to mixtures of compounds of microbial degradation of artificially produced by man, which naturally do not occur in nature. Progressive accumulation of toxic mixtures in the environment is harmful to biological systems. Study of degradation pathways of these compounds often leads to recognition of new enzyme reactions. Due to the large variety of degradative pathways, it seems an interesting presentation of known microbial degradation pathways of alkanes and the characteristics of their key enzymes. Understanding the mechanisms of decomposition of these compounds will enable a better use of microorganisms in the remediation of contaminated environments.

1. Introduction. 2. Sources and methods of the contaminants spread in soil. 3. Methods of petroleum compounds biodegradation. 4. Genetically modified micro-organisms involved in the degradation of petroleum compounds. 5. Mechanisms of biodegradation of petroleum hydrocarbons. 5.1. Intradiolic cleavage of the aromatic ring (such as “ortho”). 5.2. Extradiolic cleavage of the aromatic ring (such as “meta”)

Metody fluorescencyjnego barwienia komórek w badaniach stanu fizjologicznego bakterii

Fluorescence-based methods of cell staining in physiological state studies of bacteria
M. Olszewska, Ł. Łaniewska-Trokenheim

1. Wstęp. 2. Mikroskopia epifluorescencyjna. 3. Cytometria przepływowa. 4. Barwniki fluorescencyjne. 5. Hybrydyzacja DNA, RNA. 6. Zastosowanie metod fluorescencyjnego barwienia komórek. 7. Podsumowanie

Abstract: Despite the fact that traditional, standardized methods give satisfactory results, in fact, they are nonautomated methods, which are characterized by a long period of time in obtaining results. Progress in microbiological analysis thus requires improvements towards the instrumental and molecular methods. Fluorescence techniques are a combination of both these directions, offering an interesting alternative to the conventional, culturing methods. The article discusses the benefits and limitations of the use of fluorescence-based staining methods. The potential use in diverse microbiological directions was described.

1. Introduction. 2. Epifluorescence microscopy. 3. Flow cytometry. 4. Fluorescent dyes. 5. Hybridization DNA, RNA. 6. Application of fluorescence-based methods of cell staining. 7. Summary