All posts by Postępy Mikrobiologii

Zastosowanie testu Amesa do oceny aktywności mutagennej zanieczyszczeń gleby

The application of the Ames test to the evaluation of the mutagenic activity of soil’s pollutant
P. Jadczyk, B. Kołwzan

1. Wstęp. 2. Ekstrakcja zanieczyszczeń genotoksycznych. 2.1. Techniki ekstrakcji. 2.2. Rozpuszczalniki organiczne. 2.3. Woda jako rozpuszczalnik. 2.4. Warunki ekstrakcji. 3. Szczepy Salmonella Typhimurium stosowane do oceny aktywności mutagennej zanieczyszczeń gleby. 4. Stężenie frakcji mikrosomalnej S-9 i metodyka jej aktywacji. 5. Preinkubacja. 6. Podsumowanie

Abstract: The Ames test is universally used for examining the mutagenic activity of contaminated soil samples. Soil pollution is mostly extracted with the use of an ultrasonic bath or Soxhlet’s apparatus. Dichloromethane and methanol are commonly applied solvents for the extraction of soil pollutants. Methanol was the most effective solvent. A mixture or the sequence of solvents was also applied for the extraction. Less effective was the extraction of soil pollutants in the form of water leakage. There is no sufficient literature data for determining optimal conditions of the  extraction. Variants of the biotest technique applied by different authors demonstrated the significant diversity. The organisms tested the most often were strains of Salmonella Typhimurium TA 98 and TA 100. Its different sensitivity on extracts genotoxicity suggests the predominance of soil pollutants causing the mutation of the reading phase, which could be detected only by Salmonella Typhimurium TA 98, whereas mutations of the substitution of base pairs, are detected with the use of Salmonella Typhimurium TA 100. For activating promutagens a microsomal fraction S-9, obtained from the liver of rat, has most often been applied in different concentrations, which is activated by Aroclor 1254. Some authors applied a preincubation when performing Ames test for the genotoxicity evaluation of soil pollutants. Papers concerning the influence of the preincubation on the mutagenic effect in Ames test are rarely found. Collected literature data show the significant usefulness of the Ames test for the evaluation of mutagenic activity of soil pollutants. The comparison of the results obtained by different authors prevents the diversification of extraction techniques, solvents application and some aspects of biotest: test strains, the concentration and the preparation of the microsomal faction S-9, the possibility of applying the preincubation.  Unification of the extraction technique and the biotest, taking into consideration soil diversity and pollutants types would facilitate the comparison of the results.

1. Introduction. 2. The extraction of genotoxic pollutants. 2.1. Methods of the extraction. 2.2. Organic solvents. 2.3. The water as the solvent. 2.4. Extraction’s conditions. 3. Salmonella Typhimurium strains used to evaluation of the mutagenic activity of soil’s pollutants. 4. S-9 microsomal fraction’s concentration and its activation’s methods. 5. Preincubation. 6. Conclusion

Suplementy



W archiwum zeszytów dodaliśmy nową sekcję – suplementy. Będziemy w niej zamieszczać opublikowane w naszym czasopiśmie zeszyty z doniesieniami konferencyjnymi. Zapraszamy do lektury suplementów do tomu 56 (2017 r.), w których publikujemy streszczenia z wystąpień konferencji Mikrobiot, Biomillenium oraz PTM wczoraj – dziś – jutro.

Wewnątrzkomórkowe receptory NOD-podobne, skutki mutacji w obrębie ich genów

Intracellular NOD-like receptors, implications of mutations in their genes
M. Osiak, N. Pająk, H. Antosz

1. Wprowadzenie. 2. Rodzina receptorów NOD-podobnych. 2.1. Podrodzina NLRP. 2.2. Podrodzina NLRC. 2.3 Podrodzina NLRA. 2.4. Podrodzina NLRB. 2.5 Podrodzina NLRX. 3.Udział NLR w tworzeniu platform molekularnych-inflamasomów. 4. Choroby wywołane mutacjami w genach NLR. 4.1. Choroba Leśniowskiego-Crohna. 4.2. Choroba Blau’a. 4.3. Zespół okresowej gorączki. 4.4. Sarkoidoza. 4.5. Choroby alergiczne. 4.6. Zespół nagich limfocytów. 4.7. Niepowodzenia rozrodu. 4.8. Bielactwo. 5. Podsumowanie

Abstract: The response of the innate immune system depends inter alia on the activity of a family of NOD-like receptors (NLR). The NLR includes subfamilies of NLRP, NLRA, NLRB, NLRC, and NLRX. Active members of the NLRC subfamily ie NOD1 and NOD2 through recognizing ligands present in the cytosol activate the signaling pathway of the nuclear factor NF-κB. Other members of the NLR form large intracellular complexes called inflammasome and after binding the ligand they activate caspase 1, which splits pro-IL-1β, making it possible to release the active IL-1β outside the cell. It has been shown that mutations in certain NLR genes are associated with the development of numerous diseases including Crohn’s disease, Blau syndrome, cryopyrin-associated periodic fever syndrome, sarcoidosis, hydatidiform mole, testicular seminoma, allergic diseases, bare lymphocytic syndrome and vitiligo.

1. Introduction. 2. NOD-like receptors family. 2.2. NLRP subfamily. 2.3. NLRC subfamily. 2.4. NLRA subfamily. 2.5. NLRB subfamily. 2.5. NLRX subfamily. 3. NLR participation in the creation of molecular platforms – inflammasome. 4. Diseases caused by mutations in NLR genes. 4.1. Leśniowski-Crohn disease. 4.2. Blau syndrome. 4.3. Cryopyrin-associated periodic fever syndrome. 4.4. Sarcoidosis. 4.5. Allergic diseases. 4.6. Bare lymphocytic syndrome. 4.7. Reproductive failure. 4.8. Vitiligo. 5. Summary

Przemysłowe wykorzystanie bakterii z rodzaju Clostridium

Industrial application of Clostridium spp.
K. Leja, K. Czaczyk, K. Myszka

1. Wstęp. 2. Ogólna charakterystyka rodzaju Clostridium. 2.1. Morfologia, hodowla i metabolizm. 2.2. Chorobotwórczość. 3. Przemysłowe wykorzystanie Clostridium spp. 3.1. Biosynteza acetonu, butanolu i innych rozpuszczalników. 3.2. Synteza 1,3-propanodiolu. 3.3. Produkcja kwasów. 3.4. Produkcja wodoru. 3.5. Inne metabolity. 4.Wykorzystanie bakterii z rodzaju Clostridium w medycynie i kosmetyce. 5. Podsumowanie

Abstract: Bacteria of the genus Clostridium are often described only as being a biological threat and a foe of mankind. It is true that within the more than 150 validly described clostridial species of this heterogeneous genus, there are some that produce the most potent natural toxins known on earth. However, there is no much information about positive properties and possibility to use Clostridium strains in many industry branches, in medicine, and cosmetology. The modern biotechnology make possible to use the dangerous toxins as a valuable tools in the treatment of severe disease. It is one of the aims of this article to show that using definition “bad clostridia” is mistaken.

1. Introduction. 2. Characterization of Clostridium genera. 2.1. Morphology, cultivation and metabolism. 2.2. Pathogenicity. 3. Industrial application of Clostridium spp. 3.1. Acetone, butanol and other solvents biosynthesis. 3.2. 1,3-propanodiol biosynthesis. 3.3. Acids production. 3.4. Hydrogen production. 3.5. Other metabolites. 4. Application of Clostridium spp. in medicine and cosmetology. 5. Conclusions

Mikrobiologiczne przemiany kwasu wanilinowego

Microbial transformation of vanillic acid
M. Kurek, I. Greń

1. Wprowadzenie. 2. Mikrobiologiczny rozkład kwasu wanilinowego. 2.1. Demetylacja kwasu wanilinowego. 2.2. Dekarboksylacja kwasu wanilinowego. 2.3. Redukcja kwasu wanilinowego. 3. Synteza kwasu wanilinowego. 3.1. Synteza kwasu wanilinowego z kwasu ferulowego. 3.2. Synteza kwasu wanilinowego z eugenolu i izoeugenolu. 4. Podsumowanie

Abstract: Increasing demand for natural vanillic aroma in food industry as well as law restrictions for the usage of chemically synthesized compounds in natural fragrances caused large interest in vanillic production via biotechnological processes. Because vanillic acid is the main substrate for vanillic production, the knowledge of biological processes of its synthesis and the release from lignin is crucial for developing the optimal biotechnological processes. Some microorganisms are able to synthesize vanillic acid form naturally occurring compounds, such as ferulic acid, eugenol and isoeugenol using biotransformation reactions. Large amount of vanillin are produced by reduction of vanillic acid by carboxylic acid reductase (Car). Another pathways of vanillic acid transformation are based on its demethylation and decarboxylaction reactions. O-demethylases are NAH(P)H or tetrahydrofolic dependent enzymes. This review presents short characterization of vanillic acid transformation processes by microorganisms.

1. Introduction. 2. Microbial degradation of vanillic acid. 2.1. Demetylation of vanillic acid. 2.2. Decarboxylation of vanillic acid. 2.3. Reduction of vanillic acid. 3. Synthesis of vanillic acid. 3.1. Synthesis of vanillic acid from ferulic acid. 3.2. Synthesis of vanillic acid from eugenol and isoeugenol. 4. Summary