Browsing tag: mikroorganizmy

Mikrobiologiczna degradacja niesteroidowych leków przeciwzapalnych

Microbial degradation non-steroidal anti-inflammatory drugs
U. Guzik, K. Hupert-Kocurek, D. Wojcieszyńska

1. Wprowadzenie. 2. Charakterystyka niesteroidowych leków przeciwzapalnych. 3. Degradacja niesteroidowych leków przeciwzapalnych metodami fizyko-chemicznymi. 4. Szlaki biologicznej degradacji niesteroidowych leków przeciwzapalnych. 5. Podsumowanie

Abstract: In the recent years, commonly used non-steroidal anti-inflammatory drugs (NSAIDs) are widely detected in the environment. These biologically active substances and their continuous inflow into the environment may lead to their accumulation in the environment and chronic exposure of organisms. This in turn may cause the potential negative effects on living organisms. While the transformation mechanisms of non-steroidal anti-inflammatory drugs in the human body and in other animals have been extensively studied, degradation of these drugs by bacteria (including their degradation pathways and degradation products) has seldom been investigated and are largely unknown. Therefore, the objective of this paper is presentation actual stage of knowledge about microbiological degradation pathways of NSAIDs such as naproxen, ibuprofen, diclofenac, paracetamol.

1. Introduction, 2. Characterization of non-steroidal anti-inflammatory drugs, 3. Degradation of non-steroidal anti-inflammatory drugs by physicochemical methods, 4. Pathways of biological degradation of non-steroidal anti-inflammatory drugs, 5. Conclusion

Nitrozwiązki aromatyczne – charakterystyka i metody biodegradacji

Nitroaromatic compounds – characteristics and methods of biodegradation
A. Wysocka, A. Olszyna, I. Komorowska, M. Popowska

1. Wprowadzenie. 2. 2. Charakterystyka nitrozwiązków aromatycznych. 2.1. Właściwości chemiczne i synteza nitroarenów. 2.2. Syntetyczne nitrozwiązki aromatyczne. 3. Nitrozwiązki aromatyczne w środowisku. 4. Zagrożenia związane z nitrozwiązkami aromatycznymi. 5. Biodegradacja nitrozwiązków aromatycznych. 5.1.Mikrobiologiczna degradacja związków aromatycznych. 5.1.1. Degradacja tlenowa (aerobowa). 5.1.2. Redukcyjny rozkład nitroarenów. 5.1.2.1. Rozkład beztlenowy (anaerobowy). 5.1.3 Degradacja nitrobenzenu – przykład alternatywnych ścieżek rozkładu. 6. Bioremediacja. 6.1 Bioremediacja związków nitroaromatycznych – przykłady realizacji. 6.1.1. Bioremediacja inżynieryjna in situ. 6.1.2. Bioremediacja inżynieryjna ex situ. 6.2. Ograniczenia procesu bioremediacji i strategie ich przezwyciężania. 7. Podsumowanie

Abstract: Nitroaromatic compounds are present in the environment mainly as industry products. They pose a serious risk to our health (often exhibiting strong mutagenic and carcinogenic effect) as well as to the environment. Most of the nitroaromatic compounds are stable due to considerable resistance to degradation and they persist in the environment for a long time. In this review, we present the current state of knowledge concerning biodegradation of nitroaromatic compounds. In the first part, general information regarding their proprieties, synthesis and sources as well as pathways of microbial aerobic or anaerobic degradation are described. In some cases microorganisms have evolved several pathways of degradation specific nitrocompound, for instance nitrobenzene, which we describe in detail. The second part of the publication focuses on environmental bioremediation of nitrocompounds.

1. Introduction. 2.2. Characteristics of aromatic nitrocompounds. 2.1. Chemical properties and synthesis nitroarenes. 2.2. Synthetic aromatic nitrocompounds. 3. The aromatic nitrocompounds in the environment. 4. Risks related to aromatic nitrocompounds. 5. Biodegradation of aromatic nitrocompounds. 5.1. Microbial degradation of aromatic compounds. 5.1.1. Aerobic degradation. 5.1.2. Reductive degradation nitroarenes. 5.1.2.1. Anaerobic digestion. 5.1.3 Degradation of nitrobenzene – an example of alternative distribution pathway. 6. Bioremediation. 6.1. Bioremediation of aromatic nitro compounds – examples of implementation. 6.1.1. Bioremediation engineering in situ. 6.1.2. Bioremediation engineering ex situ. 6.2. Limitations of the bioremediation process and strategies to overcome them. 7. Summary

Mikrobiom liści roślin uprawnych

The microbiome on the leaves of crop plants
K. Kucharska, U. Wachowska

1. Wstęp. 2. Liść jako siedlisko mikroorganizmów. 3. Społeczności mikroorganizmów na liściach. 4. Mikrobiom. 5. Pozytywne oddziaływanie mikroorganizmów na rośliny. 6. Negatywne oddziaływanie mikroorganizmów na rośliny. 7. Struktura zbiorowisk mikroorganizmów zasiedlających liście. 8. Techniki badawcze zbiorowisk mikroorganizmów zasiedlających liście. 9. Podsumowanie

Abstract: The leaves of crop plants are colonized by numerous microorganisms which live on leaf surface or penetrate into the tissues, despite nutrient deficiencies and exposure to adverse environmental conditions. Leaf-colonizing microorganisms exhibit a broad range of relationships with the host plant, thus forming a complex interactive ecosystem. The functions of microbial communities and their effects on the host plant have not been fully elucidated to date. Expanding our knowledge in this area can have important practical implications, including more effective pathogen and disease control. Rapidly developing molecular techniques can provide valuable information about the interactions between microbes and the host plants they colonize. The aim of this study was to characterize microorganisms colonizing the leaves of crop plants, and to discuss the benefits and threats related to their presence in this ecological niche.

1. Introduction. 2. Leaf as habitation of microorganisms. 3. Community of microorganisms on the leaves. 4. The microbiome. 5. Positive interaction of microorganisms on plants. 6. Negative interaction of microorganisms on plants. 7. Structure of microorganism communities colonizing leaves. 8. Techniques of study microorganism communities colonizing leaves. 9. Summary

Sterylizacja za pomocą niskotemperaturowej plazmy, generowanej w warunkach ciśnienia atmosferycznego

Sterilization by low-temperature atmospheric-pressure plasma
A. Dzimitrowicz, P. Jamróz, P. Nowak

1. Wprowadzenie. 2. Plazma jako czynnik sterylizujący. 3. Rodzaje źródeł plazmowych. 4. Mechanizm procesu sterylizacji. 5. Kontrola procesu. 6. Zastosowania. 7. Podsumowanie

Abstract: Plasma is an ionized and reactive gas, which is used for sterilization of many kinds of microorganisms (e.g. bacteria, fungi), which reside on the surface of materials (e.g. medical instruments). Plasma sterilization allows to obtain absolute microbiological purity. Plasma can be generated by dielectric barrier discharge, glow discharge (including corona discharge, plasma jets or microjets) and microwave induced plasma. This article summarises literature review on plasma sterilization methods of microorganisms by low-temperature plasma generated under the atmospheric pressure.

1. Introduction. 2. Plasma as a sterilizing agent. 3. Types of plasma sources. 4. Mechanism of plasma sterilization. 5. Process control. 6. Applications of plasma sterilization. 7. Summary

Mikroorganizmy w bioaugmentacji zanieczyszczonych środowisk

Microorganisms in bioaugmentation of polluted environments
A. Mrozik

1. Wprowadzenie. 2. Mikroorganizmy w bioaugmentacji. 2.1. Pojedyncze szczepy. 2.2. Konsorcja mikroorganizmów. 2.3. Mikroorganizmy modyfikowane genetycznie. 3. Sposoby dostarczania mikroorganizmów do środowiska. 4. Czynniki ograniczające bioaugmentację. 5. Podsumowanie

Abstract: Bioaugmentation is defined as a technique for improving the degradative capacity of contaminated soil and water by adding selected strains or consortia of microorganisms. In the treatment of environmental pollution by microorganisms, three approaches can be distinguished: autochthonous bioaugmentation, in which microorganisms isolated from contaminated site as an enriched culture are reinjected to the original environment; allochthonous bioaugmentation (bioenrichment), in which seeding material is isolated from another place and gene bioaugmentation, in which genetically engineered microorganisms equipped with genes encoding proteins related to some desired function are introduced into polluted site. In the selection of proper culture for biougmentation, the following features of microorganism should be taken into consideration: fast growth, ease of culivation, capacity to withstand high concentration of contaminants and the ability to survive in a wide range of environmental conditions. The enhancement of bioaugmentation may be also achieved by delivering microorganisms on various carriers or by the use of activated soil. The efficiency of bioaugmentation is determined by abiotic and biotic factors. The first include chemical structure of contaminants, their concentration and bioavailability as well as fluctuations or extremes in temperature, pH and nutrients level. Among biotic factors, the most important are the interactions between autochthonous and added microorganisms such a competition, predation and bacteriophages. Numerous studies have demonstrated that bioaugmentation is a promising technology in remediation of soil, water and sediments polluted with polycyclic aromatic hydrocarbons, nitrophenols, polychlorinated biphenyls, chlorophenols, crude oil, diesel oil and several pesticides.

Introduction. 2. Microorganisms in bioaugmentation. 2.1. Single strains. 2.2. Consortia of microorganisms. 2.3. Genetically engineered microorganisms. 3. Methods for delivering microorganisms into environment. 4. Factors limiting bioaugmentation. 5. Summary