Abstract: Currently, nanoparticles have gained considerable attention for the treatment of bacterial infectious diseases. The possibility for using this technology as an alternative therapeutic strategy for controlling microbial biofilms, colonizations and infections has been the subject of intense investigations. Even though, the potential toxicity and disadvantage of using nanoparticles, researchers focused on their high penetrability into bacterial membranes, capabilities to disrupt biofilm formation and the role of chemotaxis in this interaction. Face to this significant debate, we discuss the link between metal resistance, bacterial chemotaxis and the promising use of nanoparticles (NP). P. aeruginosa has emerged as a model organism for biofilm studies, the aim of this review is to provide a concise and comprehensive survey of certain relevant aspects related to the research on nanoparticles and these bacteria.
Browsing tag: biofilm
Abstract: Antimicrobial resistance is becoming a paramount health concern nowadays. The increasing drug resistance in microbes is due to improper medications or over usage of drugs. Bacteria develop many mechanisms to extrude the antibiotics entering the cell. The most prominent are the efflux pumps (EPs). EPs play a significant role in intrinsic and acquired bacterial resistance, mainly in Gram-negative bacteria. EPs may be unique to one substrate or transport several structurally different compounds (including multi-class antibiotics). These pumps are generally associated with multiple drug resistance (MDR). EPs are energized by a proton motive force and can pump a vast range of detergents, drugs, antibiotics and also β-lactams, which are impermeable to the cytoplasmic membrane. There are five leading efflux transporter families in the prokaryotic kingdom: MF (Major Facilitator), MATE (Multidrug And Toxic Efflux), RND (Resistance-Nodulation-Division), SMR (Small Multidrug Resistance) and ABC (ATP Binding Cassette). Apart from the ABC family, which utilizes ATP hydrolysis to drive the export of substrates, all other systems use the proton motive force as an energy source. Some molecules known as Efflux Pump Inhibitors (EPI) can inhibit EPs in Gram-positive and Gram-negative bacteria. EPIs can interfere with the efflux of antimicrobial agents, leading to an increase in the concentration of antibiotics inside the bacterium, thus killing it. Therefore, identifying new EPIs appears to be a promising strategy for countering antimicrobial drug resistance (AMR). This mini-review focuses on the major efflux transporters of the bacteria and the progress in identifying Efflux Pump Inhibitors.
1. Introduction. 2. Major classes of efflux pumps. 2.1. ATP-Binding Cassette Superfamily. 2.2. Major Facilitator Superfamily. 2.3. Multidrug And Toxic Compound Extrusion Family. 2.4. Small Multi-drug Resistance Family. 2.5. Resistance-Nodulation-Division Superfamily. 3. Efflux pumps and their role in virulence and biofilm formation. 4. Efflux Pump Inhibitors
Abstract: The ability to from biofilms, which is a common feature in Salmonella serovars, is the main cause of persistent infections and permanent contamination in both clinical and industrial systems. Because the biofilm structures are significantly more resistant to environmental stress conditions than the planktonic forms of bacteria, it is often impossible to remove them through conventional disinfection or sterilization practices. Therefore, it has become necessary to develop effective strategies in combating biofilms, which are defined as the dominant form of microbial life. To achieve this goal, it is necessary to understand the genetic regulatory mechanisms that control the transition from planktonic form to the biofilm form and the related changes in gene expression. In this review, the current state of knowledge regarding gene regulation systems that affect the biofilm formation in Salmonella, has been summarized and discussed.
1. Introduction. 2. Regulation of biofilm formation in Salmonella. 2.1.csgD. 2.2. BarA/SirA and Csr system. 2.3. PhoPQ and RstA. 2.4. The interaction of cells in the biofilm structures through signal molecules. 2.5. sRNA’s. 2.6. dam and seqA. 2.7.MarT. 3. Conclusion
Streszczenie: Jama ustna jest skolonizowana przez ponad 700 gatunków bakterii. Występują one pod postacią pojedynczych komórek lub tworzą wielogatunkowe biofilmy. Tworzenie biofilmu, jego nieprawidłowy rozrost w połączeniu z zaburzonym funkcjonowaniem mechanizmów obronnych naszego organizmu oraz zaburzeń w składzie ilościowym i jakościowym mikrobioty jamy ustnej może prowadzić do rozwoju próchnicy, zapalenia dziąseł, parodontozy czy peri-implantitis. W pracy omówiono etapy tworzenia biofilmu oraz wzajemne oddziaływania mikroorganizmów w tej zorganizowanej społeczności. Omówiono również znaczenie wielogatunkowego biofilmu w zakażeniach jamy ustnej i co bardzo istotne, metody jego zwalczania.
1. Biofilm – definicja, etapy tworzenia, porozumiewanie się mikroorganizmów w biofilmie. 2. Biofilm w różnych częściach ciała organizmu człowieka. 3. Wielogatunkowy biofilm jamy ustnej. 4. Zakażenia jamy ustnej związane z biofilmem wielogatunkowym. 5. Zapobieganie i metody zwalczania biofilmu jamy ustnej. 5.1. Profilaktyka i właściwa higiena jamy ustnej. 5.2. Terapia alternatywna zakażeń jamy ustnej związanych z tworzeniem biofilmu. 6. Podsumowanie
Abstract: The oral cavity is colonized by more than 700 bacterial species. They occur in the form of individual cells or form multispecies biofilms. The formation of biofilm, its abnormal growth combined with impaired functioning of the defense mechanisms of the body and disorders in the quantitative and qualitative composition of the oral microbiota can lead to the development of caries, gingival inflammation, parodontosis or peri-implantitis. The paper discusses the stages of biofilm formation as well as microbial interactions within this organized community. It also addresses the significance of multispecies biofilm in oral infections and, very importantly, the methods to combat it.
1. Biofilm – definition, formation stages, microbial communication within biofilm. 2. Biofilm in different parts of the human body. 3. Multispecies oral biofilm. 4. Oral infections associated with multispecies biofilm. 5. Prevention and methods of combating oral biofilm. 5.1. Prophylaxis and proper oral hygiene. 5.2. Alternative therapy of biofilm-related oral infections. 6. Summary
Streszczenie: Cronobacter spp. uznawane są za oportunistyczne patogeny we wszystkich grupach wiekowych, szczególnie u wcześniaków, niemowląt z niską masą urodzeniową, osób w wieku podeszłym i osób z obniżoną odpornością. Obecnie rodzaj Cronobacter obejmuje siedem gatunków: C. sakazakii, C. malonaticus, C. turicensis, C. muytjesii, C. universalis, C. dublinensis i C. condimenti. Trzy pierwsze gatunki Cronobacter zostały skojarzone z infekcjami klinicznymi noworodków i wcześniaków. Zakażenia bakteriami Cronobacter mogą powodować zapalenie komórek nerwowych, zapalenie opon mózgowo-rdzeniowych, tworzyć ropnie i torbiele mózgu prowadzące do wodogłowia oraz martwicze zapalenie jelit. Chociaż zakażenia wywołane przez Cronobacter spp. są rzadkie to współczynnik śmiertelności jest bardzo wysoki, jak również koszty związane z długoterminowym leczeniem powikłań po infekcji. Cronobacter spp. dzięki produkcji otoczek i biofilmu, termotoleracyjności jest odporny na wysuszenie i wykazuje przeżywalność w mieszankach mlekozastępczych i innych produktach o niskiej aktywności wody. Cronobacter spp. izolowano z warzyw, zbóż, płatków, ziemniaków, przypraw, mięsa, ryb, sera, tofu, ryżu, makaronu, czekolady, herbaty oraz z powierzchni abiotycznych w środowisku szpitalnym, z przedmiotów i sprzętu medycznego Na podstawie Rozporządzenia (WE) nr 2073/2005 z dnia 15 listopada 2005, z późniejszymi zmianami, Cronobacter spp. powinien być nieobecny w trzydziestu 10 g próbkach preparatów w proszku do początkowego żywienia niemowląt i żywności dietetycznej w proszku specjalnego przeznaczenia medycznego, przeznaczonego dla niemowląt w wieku do 6 miesięcy. W pracy podjęto temat oceny występowania zagrożenia powodowanego przez bakterie Cronobacter w żywności w świetle obowiązujących wymagań.
1. Wprowadzenie. 2. Objawy i chorobotwórczość Cronobacter spp. 3. Wymagania przepisów prawa. 4. Mechanizmy wirulencji Crono-bacter spp. 5. Taksonomia Cronobacter spp. 6. Występowanie Cronobacter spp. w żywności. 7. Oporność Cronobacter spp. na warunki stresowe. 8. Tworzenie biofilmu przez bakterie z rodzaju Cronobacter. 9. Wykrywanie i oznaczanie liczby Cronobacter spp. 10. Antybiotykooporność Cronobacter spp. 11. Podsumowanie
Abstract: Cronobacter spp. are considered opportunistic pathogens in all age groups, especially in premature babies, children with low birth weight, the elderly and immunocompromised people. Currently, the genus Cronobacter includes seven species: C. sakazakii, C. malonaticus, C. turicensis, C. muytjesii, C. universalis, C. dublinensis and C. condimenti. The first three species of Cronobacter have been associated with clinical infections of newborns and premature babies. Cronobacter bacterial infections can cause neuritis, encephalomyelitis, the formation of abscesses and cysts of the brain leading to hydrocephalus and necrotizing enterocolitis. Often infected with Cronobacter spp. are rare, the mortality rate is very high, as well as the costs associated with temporarily treating post-infection complications. Cronobacter spp. due to the production of capsule and biofilm, high thermotolerance is resistant to drying and survival loads in milk replacers and other products with water activity. Cronobacter spp. isolated from milk replacers used for the initial feeding of infants, with vegetables, cereals, potatoes, spices, meat, fish, cheese, tofu, rice, pasta, chocolate, tea and abiotic surfaces in a hospital, with medical products and equipment. Under the Regulation (EC) No 2073/2005 of 15 November 2005, Cronobacter spp. should be absent in thirty 10 g samples of infant formulas and infant dietetic powders intended for infants up to 6 months old. The subject of the study is the assessment of the occurrence the hazard caused by Cronobacter in food in the light of applicable requirements.
1. Introduction. 2. Symptoms and pathogenicity Cronobacter spp. 3. Legal requirements. 4. Virulence mechanism Cronobacter spp. 5. Taxonomy Cronobacter spp. 6. Occurrence Cronobacter spp. in food. 7. Resistance Cronobacter spp. to stress conditions. 8. Biofilm formation by bacteria genus Cronobacter. 9. Detection and determination of numbers Cronobacter spp. 10. Antibiotic resistance Cronobacter spp. 11. Summary