Hamowanie wzrostu bakterii przez peptydowe kwasy nukleinowe i ich potencjalna rola w biotechnologii
1. Wstęp. 2. Peptydowe kwasy nukleinowe (PNA) 3. Zalety i wady PNA. 4. Sposoby transportu PNA do komórek bakteryjnych. 5. Inhibicja wzrostu bakterii poprzez wiązanie się z bakteryjnym mRNA. 6. Inhibicja wzrostu bakterii poprzez wiązanie się z bakteryjnym rRNA. 7. Zastosowanie PNA w biotechnologii. 8. Podsumowanie
Abstract: The broad use of antibiotics has resulted in the survival and spread of resistant bacterial strains. Bacteria can effectively acquire resistance when exposed to antibiotics. Therefore, it is crucial to find new antimicrobial drugs to combat antibiotic-resistant pathogens. Antisense technology involving targeting or modifying gene expression in a sequence-dependent manner has been applied to distinguish bacterial species, design antibacterials or in diagnostic applications. Typically, the bacterial target is either DNA or mRNA but there exist examples of bacterial ribosomal RNA targets. Natural oligonucleotides are unstable so in the antisense applications most often their modified versions are used. Synthetic nucleic acid analogues include locked nucleic acids, peptide nucleic acids (PNAs), and phosphorodiamidate morpholino oligomers. We will focus on the applications of PNAs, which are neutral DNA analogues containing
a pseudo-peptide backbone instead of a charged phosphate one. PNA oligomers are not degraded by proteases and nucleases. Furthermore, PNAs are not recognized by RNases. PNA oligomers can efficiently hybridize with DNA or RNA strands, and form stable duplexes or triplexes. Here, we review the studies on the development of antisense PNA sequences targeting bacterial mRNAs and rRNAs. In addition, the future prospects on the use of PNA in biotechnology are discussed.
1. Introduction. 2. Peptide nucleic acids (PNAs). 3. Advantages and disadvantages of PNA. 4. Transport of PNA into bacterial cells. 5. Inhibition of bacterial growth by targeting bacterial mRNA. 6. Inhibition of bacterial growth by targeting bacterial rRNA. 7. The use of PNA in biotechnology. 8. Summary