Browsing tag: oporność na antybiotyki

ANTYBIOTYKI I BAKTERIE: MECHANIZMY DZIAŁANIA I STRATEGIE OPORNOŚCI

ANTIBIOTICS AND BACTERIA: MECHANISMS OF ACTION AND RESISTANCE STRATEGIES
Magdalena Skarżyńska, Magdalena Zając, Dariusz Wasyl

PDF

Streszczenie: Oporność bakterii na substancje przeciwbakteryjne jest jednym z najistotniejszych problemów epidemiologicznych notowanych w skali globalnej. Powszechne stosowanie w medycynie i weterynarii substancji przeciwbakteryjnych należących do tych samych klas, niejednokrotnie bez potwierdzenia w laboratorium skuteczności zastosowanej substancji czynnej, przyczynia się do selekcji opornych bakterii u ludzi i zwierząt oraz ich rozprzestrzenienia w przyrodzie. Narastająca antybiotykooporność bakterii patogennych prowadzi do poważnych konsekwencji zarówno dla zdrowia ludzi jak i zwierząt. Równie ważna jest oporność bakterii komensalnych, gdyż stanowią one rezerwuar i wektor genów oporności w środowisku. Ekspozycja na środki przeciwbakteryjne należące do różnych klas może prowadzić do oporności krzyżowej i selekcji genów rozprzestrzeniających się horyzontalnie z udziałem ruchomych elementów genetycznych. Alarmujący jest fakt pojawienia się przenoszonej z udziałem plazmidów oporności na substancje o najwyższym poziomie istotności dla medycyny ludzkiej np. karbapenemy czy polimyksyny. Na przykładzie antybiotyków zaliczanych do kategorii „krytycznie istotnych” możliwe jest omówienie niemal wszystkich sposobów działania substancji przeciwbakteryjnych oraz bakteryjnych mechanizmów antybiotykooporności. Do efektywnej walki z rosnącą antybiotykoopornością bakterii niezbędna jest znajomość mechanizmów oporności oraz sposobów ich nabywania przez bakterie. Celem artykułu jest przegląd sposobów w jaki substancje krytycznie istotne z punktu widzenia ochrony zdrowia publicznego działają na komórki bakteryjne oraz przedstawienie złożonych mechanizmów, które odpowiadają za oporność na te substancje oraz genów warunkujących pojawienie się oporności.

1. Wprowadzenie. 2. Substancje przeciwbakteryjne powodujące utratę integralności ściany komórkowej: β-laktamy, glikopeptydy oraz pochodne kwasu fosfonowego. 2.1. Mechanizmy działania substancji przeciwbakteryjnej. 2.2. Mechanizmy oporności. 3. Substancje przeciwbakteryjne wpływające na błony komórek bakteryjnych: polimyksyny i lipopeptydy. 3.1. Mechanizmy działania substancji przeciwbakteryjnej. 3.2. Mechanizmy oporności. 4. Substancje przeciwbakteryjne hamujące syntezę kwasów nukleinowych: chinolony i ansamycyny. 4.1. Mechanizmy działania substancji przeciwbakteryjnej. 4.2. Mechanizmy oporności. 5. Substancje przeciwbakteryjne hamujące syntezę białek: makrolidy, ketolidy, aminoglikozydy, glicylcykliny, oksazolidynony. 5.1. Mechanizmy działania substancji przeciwbakteryjnej. 5.2. Mechanizmy oporności. 6. Podsumowanie

Abstract: The resistance of bacteria to antimicrobial substances is one of the most serious epidemiological problems present on a global scale. The widespread use of same classes of antimicrobials in human and veterinary medicine, often without laboratory confirmation of the efficacy of active compounds used, contributes to the selection of resistant bacteria in humans and animals, and their spread in nature. The increasing resistance of pathogenic bacteria leads to serious consequences for both human and animal health. However, the resistance of commensal bacteria is equally important as they constitute a reservoir and vector of resistance determinants in the environment. Exposure to antimicrobials belonging to different classes can lead to cross-resistance and the selection of genes that may spread horizontally on mobile genetic elements. The emergence of plasmid-encoded resistance to critically important antibiotics for human medicine e.g. carbapenems or polymyxins is alarming. On the example of antibiotics classified as critically important for human medicine, it is possible to discuss almost all bacterial mechanisms of antimicrobial resistance. For effective combat against the growing antibiotic resistance of bacteria, it is necessary to know the mechanisms of resistance and the methods of their acquisition by bacteria. The aim of the paper is to review the ways that critically important antimicrobials act on bacterial cells and present complex mechanisms that are responsible for resistance to these substances as well as genes conferring for resistance.

1. Introduction. 2. Antimicrobials that cause loss of cell wall integrity: β-lactams, glycopeptides and phosphonic acid derivatives. 2.1. Mechanisms of antimicrobial action. 2.2. Mechanisms of resistance. 3. Antimicrobials affecting the cell membrane: polymyxins and lipopeptides. 3.1. Mechanisms of antimicrobial action. 3.2. Mechanisms of resistance. 4. Antimicrobial substances that inhibit the synthesis of nucleic acids: quinolones and ansamycins. 4.1. Mechanisms of antimicrobial action. 4.2. Mechanisms of resistance. 5. Antimicrobial substances inhibiting protein synthesis: macrolides, ketolides, aminoglycosides, glycylcyclines, oxazolidinones. 5.1. Mechanisms of antimicrobial action. 5.2. Mechanisms of resistance. 6. Summary

WYSTĘPOWANIE ZJAWISKA KOSELEKCJI W ŚRODOWISKACH POZAKLINICZNYCH

OCCURRENCE OF THE CO-SELECTION PHENOMENON IN NON-CLINICAL ENVIRONMENTS
Agata Goryluk-Salmonowicz, Magdalena Popowska

DOWNLOAD PDF FILE

Streszczenie: Szczepy bakterii wieloopornych to obecnie największy problem zdrowotny na świecie. Liczne światowe organizacje zajmujące się zdrowiem publicznym apelują o konieczności ograniczenia rozprzestrzeniania się antybiotykooporności z wszelkich możliwych źródeł. Z danych literaturowych wiadomo, że takimi środowiskami źródłowymi mogą być obszary użytkowane rolniczo, gdzie powszechnie stosowano antybiotyki i sole metali ciężkich do promocji wzrostu roślin i zwierząt. Dodatkowo, wśród źródeł izolacji bakterii wieloopornych znalazły się również naturalne zbiorniki wodne, czy gleby nie użytkowane rolniczo. W ostatnich latach, bakterie oporne na antybiotyki i jednocześnie metale ciężkie, zaczęto pozyskiwać z gleb zanieczyszczonych metalami oraz z roślin zasiedlających takie gleby. Wydaje się zatem, że metale ciężkie, stanowiące zanieczyszczenie środowiska, mogą być czynnikiem selekcyjnym promującym rozprzestrzenianie się oporności na antybiotyki. Zjawisko koselekcji bakteryjnych genów oporności dotyczy najczęściej braku wrażliwości bakterii na antybiotyki oraz metale ciężkie. O zjawisku koselekcji mówimy, gdy różne geny warunkujące oporność na różne czynniki stresowe występują na tym samym ruchomym elemencie genetycznym lub, gdy te same geny warunkują oporność na różne czynniki stresowe. Niniejszy artykuł przedstawia aktualny stan wiedzy na temat tego zjawiska obserwowanego u bakterii izolowanych ze środowisk pozaklinicznych.

1. Wprowadzenie. 2. Mechanizmy koselekcji. 2.1. Mechanizm oporności krzyżowej. 2.2. Współoporność. 2.3. Współregulacja. 3. Czynniki promujące rozprzestrzenianie się zjawiska koselekcji. 4. Występowanie zjawiska koselekcji w środowiskach pozaklinicznych. 4.1. Obszary użytkowane rolniczo. 4.2. Tereny nieużytkowane rolniczo. 4.3. Naturalne zbiorniki wodne. 4.4 Endosfera roślinna. 5. Współwystępowanie genów oporności w różnych genomach środowiskowych. 6. Podsumowanie

Abstract: Multi-resistant bacterial strains currently present the main health problem worldwide. Numerous public health organizations call for the prevention, and control the spread, of antibiotic resistance from any sources. From the literature data, it is well known that agricultural areas are a source of antibiotic resistance because of the use of antibiotics and heavy metals to promote plant and animal growth. Moreover, natural water reservoirs and soil not used for agriculture are also sources of multi-drug resistant bacteria. In recent years bacteria resistant to antibiotics and heavy metals have been isolated from heavy-metal contaminated soils and from metallophytes. Therefore, it seems that heavy metals, an environmental pollutant, may also be a selection factor that promotes the spread of antibiotic resistance. The co-selection phenomenon of resistant genes is most often connected with the lack of bacterial susceptibility to antibiotics and heavy metals. Co-selection occurs when different resistant genes that enable resistance to different stress conditions are located on the same mobile genetic elements, or when the same genes determine resistance to different stress conditions. This article presents the current state of knowledge about the co-selection phenomenon observed in bacteria isolated from nonclinical environments.

1. Introduction. 2. Co-selection mechanisms. 2.1. Cross-resistance. 2.2. Co-resistance. 2.3. Co-regulation. 3. Factors promoting spread of co-selection. 4. Occurrence of co-selection in non-clinical environments. 4.1. Areas used for agriculture. 4.2. Areas not used agriculturally. 4.3. Natural water reservoirs. 4.4. Plant endosphere. 5. Co-occurence of resistant genes in different environmental genomes. 6. Summary

Epidemiologia zakażeń Streptococcus pyogenes, struktura klonalna populacji i antybiotykooporność

Epidemiology of Streptococcus pyogenes infections, clonal structure population and antibiotic resistance
K. Szczypa, J. Wilemska, W. Hryniewicz, I. Sitkiewicz

1. Wstęp. 2. Zakażenia wywoływane przez S. pyogenes. 3. Nosicielstwo i drogi szerzenia się zakażeń S. pyogenes. 4. Ustalanie pokrewieństwa genetycznego pomiędzy szczepami S. pyogenes. 5. Oporność S. pyogenes na antybiotyki. 6. Profilaktyka zakażeń S. pyogenes. 7. Podsumowanie

Abstract: Streptococcus pyogenes (GAS) is one of the major human pathogens responsible for infections worldwide. It may cause mild infections of the skin and mucosal surfaces, as well as severe invasive infections. It has been estimated that S. pyogenes is responsible for half a million deaths a year, and is considered as one of the most important pathogens.
Many clinical investigations on S. pyogenes focus on characterization of pathogenic strains, heterogeneity/homogeneity of the population clonal spread, transfer between patients and tracing sources of antibiotic resistance. Advanced studies on vaccines that prevent GAS infections are in progress.

1. Introduction. 2. S. pyogenes infections. 3. Carrier state and epidemiology of infections. 4. S. pyogenes strains genetic affinity. 5. S. pyogenes resistance to antibiotics. 6. The prophylactics of S. pyogenes infections. 7. Summary

Mechanizmy oporności na antybiotyki i chemioterapeutyki pałeczek Stenotrophomonas maltophilia

Restistance mechanisms to antibiotics and chemotherapeutics in Stenotrophomonas maltophilia
K. Hankiewicz-Ziołkowska, E. Gospodarek

1. Wstęp. 2. Antybiotyki beta-laktamowe. 3. Antybiotyki aminoglikozydowe. 4. Chinolony. 5. Kotrimoksazol. 6. Wielolekooporność

Abstract: Stenotrophomonas maltophilia are opportunistic bacteria which may manifest decreased resistannce to many antibiotics – beta-lactams, aminoglycosides, quinolones and co-trimoxazole. The mechanisms of resistance to antibiotics and chemoterapeutic are discussed.

1. Introduction. 2. Beta-lactams. 3. Aminoglycosides. 4. Quinolones. 5. Co-trimoxazole. 6. Multidrug resistance

Biofilm, pompy MDR i inne mechanizmy oporności Stenotrophomonas maltophilia na związki przeciwbakteryjne

Biofilm, MDR efflux pumps and other mechanisms of Stenotrophomonas maltophilia resistance to antibacterial substances
O. Zając, A. E. Laudy, S. Tyski

1. Wstęp. 2. Leczenie zakażeń S. maltophilia. 3. Oporność na związki przeciwbakteryjne. 3.1. Oporność na antybiotyki i chemioterapeutyki. 3.2. Oporność na środki dezynfekcyjne. 3.3. Oporność na jony metali. 4. Systemy pomp. 4.1. Rodzina RND. 4.2. Rodzina MFS. 4.3. Rodzina ABC. 4.4. Pompa FuaABC. 5. Biofilm bakteryjny i system quorum sensing. 6. Podsumowanie

Abstract: Stenotrophomonas maltophilia is a non-fermentative Gram-negative rod, which can cause many infections, including pneumonia and bacteremia, especially in immunocompromised or long-term hospitalized patients. The infections are difficult in therapy, because clinical isolates are usually highly resistant to many classes of antimicrobial agents, moreover, they are able to colonize medical devices and epithelial cells and form biofilm. The several resistance mechanisms of S. maltophilia to antibacterial agents have been described, among them: β-lactamases production, production of other enzymes modifying antibiotics structure and activity of multidrug efflux pumps (MDR). Up to date, eight MDR efflux pumps have been identified in S. maltophilia strains. These pumps belong to three different families of MDR pumps and RND family plays the most important role in multidrug resistance.

1. Introduction. 2. Treatment of S. maltophilia infections. 3. Resistance to antibacterial substances. 3.1. Resistance to antibiotics and chemotherapeutics. 3.2. Resistance to disinfectants. 3.3. Resistance to metals. 4. Efflux systems. 4.1. RND family. 4.2. MFS family. 4.3. ABC family. 4.4. The FuaABC efflux pump. 5. Biofilm and quorum sensing system. 6. Summary