Browsing tag: biofilm

ROLA I ZNACZENIE WYBRANYCH CZYNNIKÓW WIRULENCJI DETERMINUJĄCYCH CHOROBOTWÓRCZOŚĆ UROPATOGENNYCH SZCZEPÓW ESCHERICHIA COLI

THE ROLE AND IMPORTANCE OF SELECTED VIRULENCE FACTORS DETERMINING THE PATHOGENICITY OF UROPATHOGENIC ESCHERICHIA COLI STRAINS
Sylwia Joanna Chmielewska, Katarzyna Leszczyńska

 PDF

Streszczenie: Najczęstszym czynnikiem etiologicznym zakażeń układu moczowego (ZUM) są szczepy UPEC (Uropathogenic Escherichia coli), będące przyczyną 75–95% przypadków ZUM. W patomechanizmie ZUM ogromną rolę odgrywają czynniki wirulencji bakterii UPEC, jak również zdolność do tworzenia biofilmu. Główną przeszkodą do wzrostu mikroorganizmów jest niedobór żelaza, dlatego też szczepy UPEC wytwarzają siderofory jak również receptory sideroforów, które umożliwiają skuteczny wychwyt i transport żelaza do komórki bakteryjnej. Ponadto, w celu modulacji odpowiedzi immunologicznej i szlaków metabolicznych gospodarza szczepy UPEC produkują następujące toksyny, tj. α-hemolizynę (HlyA), cytotoksyczny czynnik nekrotyzujący (CNF-1) i toksynę autotransportującą (VAT, Vat-like/Vat-ExEc). Kolejnym nowo poznanym czynnikiem wirulencji jest genotoksyna, tj. białko Usp wywołujące fragmentację DNA i apoptozę komórek. Z kolei, białko Ag43 umożliwia bakteriom UPEC adhezję do komórek układu moczowego czy agregację i formowanie biofilmu. Należy podkreślić, że wszystkie wymienione wyżej czynniki wirulencji jak również zdolność do tworzenia biofilmu, ułatwiają szczepom UPEC kolonizację i rozprzestrzenianie w układzie moczowym. Podsumowując, bakterie UPEC posiadają cały arsenał czynników wirulencji, które umożliwiają przetrwanie nawet w tak niesprzyjającym środowisku, jakim jest układ moczowy, co ostatecznie prowadzi do rozwoju ZUM.

1. Wstęp. 2. System wychwytu żelaza – siderofory, receptory sideroforów. 3. Toksyny. 3.1. α-hemolizyna HlyA. 3.2. Cytotoksyczny czynnik nekrotyzujący 1. 3.3. Toksyna VAT. 4. Białko Usp. 5. Białko Ag43. 6. Biofilm bakteryjny. 7. Podsumowanie

Abstract: The most frequent etiologic agents of the urinary tract infections (UTIs) are UPEC strains (Uropathogenic Escherichia coli), which are responsible for 75–95% of UTIs. The virulence factors of UPEC bacteria, as well as their ability to form biofilm, play a significant role in the pathogenicity of UTIs. Limiting iron availability is a major host defense against the growth of microorganisms within hosts. That is why UPEC strains produce various types of siderophores as well as siderophore receptors, which facilitate the uptake and transport of iron to the bacterial cell. Moreover, in order to modulate an inflammatory response and host signaling pathways, UPEC strains produce the following toxins: α-hemolysin (HlyA), cytotoxic necrotizing factor 1 (CNF-1) and vacuolating autotransporter toxin (VAT, Vat-like/ Vat-ExEc). Moreover, Usp is a novel genotoxin of UPEC strains which provokes DNA fragmentation and cell apoptosis. Furthermore, the presence of protein Ag43 enhances adhesion of UPEC within the urinary tract, aggregation and biofilm formation. It is important to underline that all of the virulence factors mentioned above and the ability to form biofilm facilitate and enable UPEC colonization and dissemination in the urinary tract. In conclusion, UPEC harbors an arsenal of virulence factors which promote persistence within the adverse settings of the host urinary tract and finally lead to the development of UTI.

1. Introduction. 2. Iron acquisition system – siderophores, siderophore receptors. 3. Toxins. 3.1. α-hemolysin HlyA. 3.2. Cytotoxic necrotizing factor 1. 3.3. Toxin Vat. 4. Protein Usp. 5. Protein Ag43. 6. Bacterial biofilm. 7. Summary

THE STRINGENT RESPONSE AND ITS INVOLVEMENT IN THE REACTIONS OF BACTERIAL CELLS TO STRESS

ODPOWIEDŹ ŚCISŁA I JEJ ZAANGAŻOWANIE W REAKCJE KOMÓREK BAKTERYJNYCH NA STRESY
Julia Berdychowska, Justyna Boniecka, Grażyna B. Dąbrowska

DOWNLOAD PDF FILE

Abstract: The stringent response is a form of bacterial response to adverse environmental conditions. Its effectors are guanosine tetraphosphate and guanosine pentaphosphate [(p)ppGpp], which are synthetized by RelA, SpoT and their homologs (RSH). RelA, a (p)ppGpp synthase, is activated when there is a shortage of amino acids, whereas SpoT, which has the ability to synthetize and hydrolyze (p)ppGpp, responds to fatty acids, iron and carbon limits. Accumulation of (p)ppGpp causes an inhibition of translation, replication, a decrease in the transcription of many genes, e.g. rRNA, tRNA, encoding ribosomal proteins, and an increase in the transcription of genes whose proteins are important in bacterial stress response. The stringent response alarmones are crucial for bacterial resistance to oxidative stress and antibiotics. They also regulate the production of specific molecules, the so-called quorum sensing autoinducers, which help bacteria communicate the density of their own population, which enables them to adjust their metabolism to the prevailing conditions, to form a biofilm – a community of microorganisms attached to a certain surface, ensuring them appropriate conditions to survive in an unfavourable environment, and to colonize new niches. (p)ppGpp has a positive impact on biofilm formation not only via the regulation of quorum sensing, but also by stimulating the synthesis of potential elements of the biofilm. It also appears that the stringent response alarmones decrease the ability of Agrobacterium tumefaciens bacteria to transform plants and thus their potential to cause disease. (p)ppGpp enables the bacteria to perform swarming motility, a movement that increases their resistance to adverse environmental factors.

1. Introduction. 2. RelA, SpoT and RSH proteins – enzymes that metabolize the alarmones of the stringent response. 2.1. The regulation of transcription via stringent response alarmones in Gram-negative bacteria. 2.2. The regulation of transcription via (p)ppGpp in Gram-positive bacteria. 2.3. The influence of stringent response alarmones on translation and replication. 3. The role of the stringent response in the regulation of other physiological processes. 3.1. The role of the stringent response in the production of siderophores and antibiotics. 4. Bacterial cell resistance to stress and the stringent response. 4.1. The participation of the stringent response in quorum sensing regulation. 4.2. The regulation of exopolysacharide production and biofilm formation dependent on the stringent response. 4.3. The role of the stringent response in the regulation of bacterial swarming motility. 5. Summary

Streszczenie: Odpowiedź ścisła jest reakcją bakterii na niekorzystne warunki środowiska. Jej efektorami są alarmony, czterofosforan i pięciofosforan guanozyny [(p)ppGpp], syntetyzowane przez enzymy RelA, SpoT oraz ich homologi (RSH). Enzym RelA, będący syntazą (p)ppGpp, jest aktywowany w odpowiedzi na niedobór aminokwasów, natomiast enzym SpoT, posiadający zdolność syntezy i hydrolizy (p)ppGpp, w odpowiedzi na niedobór kwasów tłuszczowych, żelaza oraz węgla. Akumulacja (p)ppGpp powoduje zahamowanie translacji, replikacji oraz obniżenie transkrypcji wielu genów, np. rRNA, tRNA, kodujących białka rybosomalne, a podwyższenie tych których białka są istotne w odpowiedzi bakterii na stres. Alarmony odpowiedzi ścisłej zapewniają bakteriom oporność na stres oksydacyjny i antybiotyki. Regulują również produkcję specyficznych cząsteczek, tzw. autoinduktorów quorum sensing, pomagających bakteriom we wzajemnej komunikacji odnośnie gęstości ich własnej populacji, co umożliwia im dostosowanie metabolizmu do panujących warunków, formowanie biofilmu – swego rodzaju społeczności mikroorganizmów zapewniającej sobie odpowiednie warunki do przetrwania w niesprzyjającym środowisku, oraz zasiedlanie nowych nisz. (p)ppGpp wpływają pozytywnie na formowanie biofilmu nie tylko poprzez regulację quorum sensing ale i poprzez stymulację syntezy potencjalnych elementów biofilmu. Wydaje się, że alarmony odpowiedzi ścisłej obniżają zdolność bakterii Agrobacterium tumefaciens do transformacji gospodarzy roślinnych, a tym samym ich zdolności chorobotwórcze. (p)ppGpp odpowiadają również za ruch mrowiący bakterii, który zwiększa ich oporność na niekorzystne czynniki środowiska.

1. Wprowadzenie. 2. Białka RelA, SpoT i RSH – enzymy metabolizmu alarmonów odpowiedzi ścisłej. 2.1. Regulacja transkrypcji przez alarmony odpowiedzi ścisłej u bakterii Gram-ujemnych. 2.2. Regulacja transkrypcji przez (p)ppGpp u bakterii Gram-dodatnich. 2.3. Wpływ alarmonów odpowiedzi ścisłej na translację i replikację. 3. Rola odpowiedzi ścisłej w regulacji innych procesów fizjologicznych bakterii 3.1. Rola odpowiedzi ścisłej w produkcji sideroforów i antybiotyków. 4. Oporność komórek bakteryjnych na stres a odpowiedź ścisła. 4.1. Udział odpowiedzi ścisłej w regulacji quorum sensing. 4.2. Regulacja produkcji egzopolisacharydów i tworzenia biofilmu zależne od odpowiedzi ścisłej. 4.3. Rola odpowiedzi ścisłej w regulacji ruchu mrowiącego bakterii. 5. Podsumowanie

FROM A COMMENSAL TO A PATHOGEN – TWO FACES OF STAPHYLOCOCCUS EPIDERMIDIS

DWA OBLICZA BAKTERII STAPHYLOCOCCUS EPIDERMIDIS, CZYLI OD KOMENSALA DO PATOGENU
Beata Podgórska, Danuta Kędzia

DOWNLOAD PDF FILE

Abstract: Staphylococcus epidermidis is a commensal organism and the most abundant constituent of the healthy human skin and mucous membranes micrbiota. It is well adapted to colonize and evade human antimicrobial barriers. Staphylococcus epidermidis not only competes with potentially harmful pathogens, but also produces a plethora of proteins supporting host natural defenses. At the same time, S. epidermidis is an opportunistic pathogen recognised as one of the leading causes of healthcare associated infections. S. epidermidis is mainly responsible for bloodstream infections and other biomedical device related infections. Hospital strains of S. epidermidis form protective biofilm and are characterised with antibiotic resistance.

1. Introduction. 2. Staphylococcus epidermidis as a commensal organism. 2.1. Origin of S. epidermidis. 2.2. Human skin as S. epidermidis environment. 2.3. Adaptation mechanisms of S. epidermidis. 2.4. Mechanisms of supporting skin’s antimicrobial defences. 2.5. Influence on activity of host cells. 3. S. epidermidis as a pathogen. 3.1. Biofilm and virulence factors. 4. Summary

Streszczenie: Bakterie Staphylococcus epidermidis są mikroorganizmami komensalnymi, wchodzącymi w skład naturalnej mikrobioty skóry i błon śluzowych człowieka. Wykształciły szereg przystosowań, które umożliwiają kolonizację skóry i pozwalają im na unikanie mechanizmów obrony przeciwdrobnoustrojowej człowieka. Bakterie S. epidermidis wytwarzają czynniki o aktywności przeciwdrobnoustrojowej, które wspomagają barierę ochronną skóry człowieka. Z drugiej strony są jednym z najważniejszych czynników etiologicznych zakażeń szpitalnych. Szczepy szpitalne bakterii S. epidermidis wytwarzają biofilm bakteryjny i wykazują oporność na różne antybiotyki. Są odpowiedzialne głównie za zakażenia krwi oraz zakażenia związane z obecnością biomateriałów w organizmie pacjenta.

1. Wprowadzenie. 2. Bakterie S. epidermidis jako komensale. 2.1. Pochodzenie bakterii S. epidermidis. 2.2. Skóra jako środowisko życia bakterii S. epidermidis. 2.3. Mechanizmy adaptacyjne bakterii S. epidermidis do środowiska życia. 2.4. Mechanizmy wspierania bariery ochronnej skóry. 2.5. Wpływ na funkcje komórek gospodarza. 3. Bakterie S. epidermidis jako patogen. 3.1. Biofilm bakteryjny i czynniki wirulencji. 4. Podsumowanie

Dwuskładnikowe systemy regulacyjne ziarenkowców Gram-dodatnich i ich rola w tworzeniu biofilmu

The role of two-component regulatory systems of Gram-positive cocci in biofilm formation
A. Nowak, S. Tyski

1. Wstęp. 2. Budowa, sposób działania i autoregulacja dwuskładnikowych systemów regulacyjnych (TCS). 3. TCS a biofilm. 3.1. Biofilm paciorkowców. 3.1.1. System VicRK S. mutans. 3.1.2. System ComDE S. mutans. 3.1.3. System HK11/RR11 (LiaSR) S. mutans. 3.1.4. System CiaRH S. mutans. 3.1.5. System CovRS (CsrRS) paciorkowców grup A, B, C. 3.1.6. System BfrAB S. gordonii. 3.2. Biofilm gronkowców. 3.2.1. System ArlRS S. aureus. 3.2.2. System GraRS S. aureus. 3.2.3. System WalKR S. aureus. 3.2.4. System LytSR S. aureus. 3.2.5. System SaeRS S. aureus oraz S. epidermidis. 3.3. Biofilm enterokoków. 3.3.1. System FsrABC E. faecalis. 3.3.2. System EtaSR E. faecalis. 4. Podsumowanie

Abstract: Two-component systems (TCS) are common in bacterial cells and play an important role in response to various signals coming from environment. The simplest TCS consists of two elements: a membrane sensor protein, which receives signals and the other – a regulatory protein that modulates target gene expression in response to the stimulus. The recent studies have shown that biofilm formation is dependent on many genetic factors, including the two-component regulatory systems. The bacterial cells living in biofilm communities are very vital and resistant to many antibiotics and antimicrobial agents. Therefore, in-depth knowledge of TCS involved in biofilm formation seems to be necessary to combat the growing resistance of bacteria.
1. Introduction. 2. Structure, organization and autoregulation of two-component regulatory systems. 3. TCS and the biofilm. 3.1. Streptococcal biofilm. 3.1.1. The VicRK system of S. mutans. 3.1.2. The ComDE system of S. mutans. 3.1.3. The HK11/RR11 (LiaSR) system of S. mutans. 3.1.4. The CiaRH system of S. mutans. 3.1.5. The CovRS (CsrRS) system of grup A, B, C streptococci. 3.1.6. The BfrAB system of S. gordonii. 3.2. Staphylococcal biofilm. 3.2.1. The ArlRS system of S. aureus. 3.2.2. The GraRS system of S. aureus. 3.2.3. The WalKR system of S. aureus. 3.2.4. The LytSR system of S. aureus. 3.2.5. The SaeRS system of S. aureus and S. epidermidis. 3. Enterococcal biofilm. 3.3.1. The FsrABC system of E. faecalis. 3.3.2. The EtaSR system of E. faecalis . 4. Summar

Problematyka zakażeń okołowszczepowych

Infections associated with implantable biomaterials
R. Pokrowiecki, S. Tyski, M. Zaleska

1. Wstęp. 2. Patogeneza zakażenia okołowszczepowego. 3. Klasyfikacja zakażeń okołowszczepowych. 4. Diagnostyka. 5. Profilaktyka zakażeń. 6. Leczenie zakażeń. 6. Podsumowanie

Abstract: Bacterial infections accompanying implanted medical devices create serious clinical problems. Using titanium implants may reduce the rate of there infections. Physicochemical properties of titanium allow using it as implantable biomaterial to maintain osseointegration, phenomenon described as “biological and functional connection of the implant with the living bone”. One of the most important factors which can affect osseointegration is bacterial colonization of the implant surface and development of Biomaterial Associated Infection (BAI). Impaired osseointegration can increase the risk of subsequent loosening due to micromotion. BAI’s in orthopaedics and maxillofacial surgery are serious complications, which ultimately lead to osteomyelitis with consequent devastating effects on bone and surrounding soft tissues. Implant associated infections are caused by microorganisms which adhere to the implant surface and then live clustered together in a highly hydrated extracellular matrix attached to the surface, known as bacterial biofilm. Simple debridement procedures with retention of prosthesis and chemotherapy with antimicrobial agents are the treatments not always effective against infections already established.

1. Introduction. 2. Pathogenesis of biomaterial associated infection. 3. Classification. 4. Diagnostics. 5. Prophylaxis. 6. Treatment. 6. Summary